
N- NAVAL POSTGRADUATE SCHOOL
Lo Z. Monterey, Cal ifornia

THESIS

AN EMPIRICAL STUDY OF FAULT DETECTION
BY STATIC UNITS-CONSISTENCY ANALYSIS

by

Judy A. Browning

September 1991

Thesis Advisor Timothy Shimeall

Approved for public release; distribution is unlimited.

92-06978

Unclassified
SECURITY CLASSIFCATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTIUCHnVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUThORITY 3. DISTRIBUTION/ AVAILABIITY OF REPORT
2b. Approved for public release; distribution is unlimited.
2b. DCISSIFhCATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NIUMBER(S) 5. MONITORING ORGANTZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANILATION
Naval Postgraduate School (If Applicable) Naval Postgraduate School

37
6c. ADDRESS (city, state, and ZIP code) 7b. ADDRESS (city, state, and ZIP code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a. NAME OF FLNDING/SPONSORING 6b. OF-ICE SYMBOL 9. PROC URE,\ENT INSTRUMENT IDfNT-IFICAT1ION NUMBE R

ORGANIZATION (If Applicable)

8c. ADDRESS (city, state, and ZIP code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNT
EL.EMENT NO. NO. NO. ACCESSION NO.

lI. TITLE (Include Security Classqftcation)
AN EMPIRICAL STUDY OF FAULT DETECTION BY STATIC UNIT-CONSISTENCY ANALYSIS (u)

12. PERSONAL AUTHOR(S)
Judy A. Browning

13a. TYPE OF REPORT 13b. TLME COVERED 14. DATE OF REPORT (year, monihday) 15. PAGE COUNT
Master's Thesis FROM 10 1991 September 18 92

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

17. COSATI CODES 1. SUBIECT TERMS (continue on reverse if necessary and identify by block nwnber)

IELD GROT SUBGROUP software testing, static analysis, software tools, software experiments,
fault detection, units-consistency analysis, dimensional analysis

19. ABSTRACT (Continue on reverse if necessary and identify by block nwnber)

With the increasing costs involved in software development, testing has become a more critical aspect of the software

engineering process. Automatic methods, such as various static analysis techniques, may offer economic fault detection.

This thesis analyzes a static analysis technique that allows users to associate units with variables in computer programs and

to check that data transformations manipulate units in a consistent manner. A tool is designed and applied for this analysis.

Its performance is measured by comparing the results with a previous study of other testing techniques in detecting faults.

The results reveal that this technique consistently detected a narrow class of faults including some faults not found by other

testing techniques. The results also show that application of this technique during the requirements and design phases of

software development can identify faults associated with units-inconsistency early and reduce costs involved in developing a

piece of software.
20 DISTBLTnON/AvAIABILIT- OFABSTCRAC 21. ABSRACT SECURY ,CLASSIFICA11ON

X 7 9, M 1 []SAME AS RPT. ,] ncusras Unclassified

22a, NAMEOFRFSPONSIBLE INDIVDDUAl. j 22b. TELFPHONE(Itnude at-axde) 22r- OFFICE SYM101.
Timothy Shimeall 1 408) 646-2509 CS!SM

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURI'Y CLASSIFICATION OF 11 IS PAG:

All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

An Empirical Study of Fault Detection by Static
Units-Consistency Analysis

by

Judy A. Browning
Captain, United States Army

B.S., University of Southern Mississippi, 1985

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1991

Author: ', _________,___--_,_____

Judy A. Browninl

Approved by: "_-_ _ _ _ _ _ _ _ _ _ _

Timothy Shimeall, Thesis Advisor

Amr Zy S c'-aler--

Robert B. McGhee, Chairman
Department of Computer Science

ii

AN EMPIRICAL STUDY OF FAULT DETECTION BY
STATIC UNITS-CONSISTENCY ANALYSIS

With the increasing costs involved in software development, testing has become a

more critical aspect of the software engineering process. Automatic methods, such as

various static analysis techniques, may offer economic fault detection. This thesis analyzes

a static analysis technique that allows users to associate units with variables in computer

programs and to check that data transformations manipulate units in a consistent manner. A

tool is designed and applied for this analysis. Its performance is measured by comparing

the results with a previous study of other testing techniques in detecting faults. The results

reveal that this technique consistently detected a narrow class of faults including some

faults not found by other testing techniques. The results also show that application of this

technique during the requirements and design phases of software development can identify

faults associated with units-inconsistency early and reduce costs involved in developing a

piece of software.

i

TABLE OF CONTENTS

1. BACKGROUND AND PREVIOUS WORK 1I

A. INTRODUCTION..1I

B. RELATED RESEARCH .. 3

C. RESEARCH QUESTIONS.. 4

D. OVERVIEW ... 5

II. RESEARCH DESCRIPTION.. 6

A. INTRODUCION.. 6

B. THE PARSER ... 6

C. THE PHYSICAL UNITS CHECKER 8

D. SUMMARY.. 10

III. RESULTS.. 11

A. INTRODUCTION..11

B. DESCRIPTION OF EXPERIMENTAL SUBJECT......................11.I

C . EXPERIMENT PROCEDURE ... 13

D. ANALYSIS OF RESULTS..15

1. Faults Detected by the Tool 15

2. Strengths and Weaknesses of the Tool...........................18 I

3. Improvement and Other Uses of the Tool......................... .. 19

E. CONCLUSION 20

IV. CONCLUSION.. 22

A. INTRODUCTION..22

B. RESEARCH SUMMARY.......................... 22

C. RECOMMENDATIONS 23

iv

D. FUTURE WORK... 24

APPENDIX A ... 26

APPENDIX B.................... 74

APPENDIX C ... 82

APPENDIX D 83

LIST OF REFERENCES... 84

INITIAL DISTRIBUTION LIST 85

I. BACKGROUND AND PREVIOUS WORK

A. INTRODUCTION

With the proliferation of computers and the increasing costs involved in software

development, testing has become a critical aspect of the software engineering process.

Software testing usually requires more than half of the effort involved in producing

working programs. Most programmers dislike testing. They have difficulty selecting data

to detect faults in their programs. Fully automatic testing techniques help to find faults

without forcing the programmers to select data.

The ANSI/IEEE Standard defines a fault as an accidental condition that causes a

functional unit to fail to perform its required function. An error is a discrepancy between a

computed, observed, or measured value or condition, and the true, specified, or

theoretically correct value or condition. A failure is the inability of a system or system

component to perform a required function within specified limits. (ANSI/IEEE, 1983,

pp.18-19)

Techniques for detecting software faults are divided into two categories: dynamic

analysis and static analysis. These techniques help identify different classes of faults

within programs. The principle dynamic analysis technique is program testing (Howden,

1981, p. 210), which examines the behavior of a program during execution given certain

sample test data. An example of this type of analysis is a test case analyzer that determines

if all executable statements within a program are reached at least once.

Static analysis examines the source code and structure of programs for faults. This

analysis occurs during the requirements, design, or implementation phases of the software

development process. Static analysis involves examination of information in documents

created during these phases, but does not require actual execution of the program under

development. It detects classes of faults that include uninitialized variables, undeclared

variables, unreferenced variables, operand type mismatches, and conflicts between actual

and formal parameters of modules. Static analysis techniques can detect different types of

faults, but the use of these techniques may miss some important faults, specifically logical

faults. There has been limited research examining the strengths and weaknesses of static

analysis techniques. That research, however, has found several key limitations.

One limitation using static analysis techniques is the inability to track the value of a

variable as it changes. An example of this is an array index. Since the value of array

indexes is usually dynamically calculated there is no way for static analysis to identify the

specific index value (Beizer, 1990, p.156). This forces static analysis techniques to treat a

reference to any array element as a reference to all array elements. Static analysis

techniques that are performed manually can be limiting because of the amount of detail

involved. Since humans have difficulty in handling large amounts of details, manual

techniques become less effective as program size increases.

Although static analysis techniques have limitations, their application may be

bencficial under some conditions. Static analysis techniques may detect faults prior to

execution of a program. If faults are detected earlier in the software development process,

static analysis techniques may be more economical than other techniques. They may also

be useful if the class of faults detected is not redundant to the faults detected by applying

similar techniques. Static analysis may be used if it can be shown that the overall testing

effort can be reduced. If testers are able to eliminate certain classes of faults early by using

static analysis techniques or narrow the focus of the dynamic testing efforts then static

analysis may be beneficial. Incorporating more effective static analysis techniques has been

a continuing trend in language processor design.

Improving static analysis methods is the main purpose of this research. One way to

improve static analysis is to add more application-based information into the analysis to

help detect faults. Many programs in engineering and science deal with calculations

involving physical units and units can be associated with variables in other application

fields as well. Adding the capability to check units by static analysis requires defining units

that are to be used, knowing the relationship among units, and defining the association of

units with program variables. A static analysis technique that checks for consistency of

units is different from other techniques that are built in to compilers such as type checking.

With type checking, variables can be convened to other types by a syntactic means, but the

unit associated with a variable is determined by known relationships or it is algebraically

derived. Information associated with units may be derived from the application area and

the program specification; the rest would need to be added by the analyst.

A computer program such as a language processor is a logical choice for this type of

analysis because the technique involves repeated application of simple rules to easily-

extracted program information. Manual checking of this sort is expensive, tedious and

error-prone. A computer program would provide more consistent results with less cost.

This check would not determine full program correctness, but rather, determine consistency

in the program's data transformations that involve physical units.

B. RELATED RESEARCH

There has been some research in units-consistency checking that was concerned with

implementations of units-consistency techniques. Karr did a study detailing how a

programming language could keep track of physical units. He addressed the issues of what

the set of elementary units would include and what would the relationship among those

units be. He proposed that the user be allowed to reserve identifiers and declare

relationships at their convenience. Once the user declared the units and their relationships,

3

a language compiler could then construct vectors representing relationships and apply linear

algebra methods to check for unit consistency (Karr, 1978, pp. 385-391).

The research conducted by Bhargava focused on the dimensional aspects of units and

their use in enhancing the reliability of mathematical modeling. He treated units as

dimensions that represent non-numeric symbols. His method encoded units of

measurement as prime numbers and manipulated the resulting expression numerically.

Using the unique factorization theorem he developed a method to simplify dimensions, i.e.,

units, and verify dimensional equivalency. The primary focus of this research was its

application in mathematical modeling systems, specifically the model validation and model

solution phases (Bhargava, 1991, pp. 1-3).

Previous research outlined different methods for implementing units-consistency

checking tools. Exploring dimensional simplification and verification of dimensional

consistency of expressions in modeling formulation and model validation was the

motivation for studies done by Bhargava (Bhargava, 1991, p. 3). Karr's resea ch

examined some language design considerations and compiler implementation issues (Karr,

1978, p. 386). Issues concerned with testing, such as increasing the reliability of

programs, were left for future research. This thesis examines the question of reliability; it

offers a first look at the relative effectiveness of a units-consistency analysis technique with

other testing techniques.

C. RESEARCH QUESTIONS

This research involves the extension of a programming language vith a construct

for inclusion of physical units to allow for automatic detection of unit inconsistencies. The

primary focus is a comparative analysis of this technique with other testing techniques

applied in previous research. This information may affect the planning phase of software

development and the selection of testing techniques.

4

One question addressed by this research deals with redundancy. If application of a

units-consistency technique detects new faults, not previously revealed by other testing

techniques, then it may be of value to testers. Applying non-redundant techniques helps to

increase the reliability of a piece of software.

Another question addressed involves the cost of applying a units-consistency

technique. Any software developer is concerned with costs. The costs associated with

detection and correction of faults increase as each phase in the software development cycle

is completed. If a technique can be applied in the earlier phases of software development,

the costs associated with fault correction may be less.

A more informed software-development manager is able to make wiser decisions.

This thesis provides information obtained from research that allows for better planning of

the testing effort in the development process. It addresses the issue of whether units-

consistency analysis meets criteria for effective use.

D. OVERVIEW

The first step in conducting this research was developing a tool to analyze a program

for units-consistency. Chapter II gives a description of that tool. Chapter III is an analysis

of the results of applying the tool, including a comparison of its performance with other

testing techniques in detecting faults. The analysis in the chapter attempts to answer the

research questions outlined in the previous section. The concluding chapter gives a

summary of the significant results, suggestions to practitioners in the use of this technique

and directions for future research.

5

II. RESEARCH DESCRIPTION

A. INTRODUCTION

The programming for this research project required building a static-analysis tool

that checks consistency of physical units for each data transformation in a Pascal program

(i.e., each assignment statement and parameter passing). The rationale behind checking

only data transformations is that this is where values within programs frequently become

contaminated.

A desire for flexibility and ease of testing led to structuring the tool into two steps.

The first step is a program that parses the source code and generates an input file for the

second step. The second step actually verifies the physical unit consistencies within a

program by comparing the input file with a file that contains a list of valid relationships of

variables and their physical units. This chapter describes the two programs that form the

tool.

B. THE PARSER

The parser, called Pparse, takes as its input a Pascal program that uses an extended

version of the basic Pascal grammar (Jenson and Wirth, 1974). The code for this parser is

given in Appendix A. Two software-development tools, LEX and YACC (Mason and

Brown, 1991), were used to develop Pparse. It is a basic Pascal parser with embedded C

code that performs the appropriate semantic actions. Pparse follows a modified grammar

that allows unit declarations following identifiers. Specialized comments, indicated by an

ampersand immediately following the comment delimiter, form the unit declarations. The

programmer can insert physical unit declarations after any identifier used in a program.

This allows the user to associate units with constant declarations, type declarations, and

6

variable declarations at the beginning of the program, but has the added flexibility of

placing unit declarations in data transformations.

The information generated by Pparse becomes the input file for the physical units

checker. It provides an expression for each data transformation in the Pascal program

being parsed. The curly brackets, "{}", delimit the beginning and end of each expression

respectively. A line number appears after the open bracket that tells the user approximately

where the data transformation occurs in the source code. The expression contains Pascal

variables, which indicate array subscripts by the square brackets, "[]", record references

by a period ".". and pointer references by a carrot "A". Any combination of these

aggregate data types can form complex variable references. For example, the reference

"NewA[][].BatDim.LinWid' is a variable that points to a two dimensional array containing

the "BatDim" record with the subelement "LidWid". The parser assigns units at the lowest

level of reference, therefore whatever unit belongs to the subelement "LinWid" is the unit

associated to this reference in a program. Because all elements of an array were assumed to

have the same physical units, index expressions did not disambiguate units within an

expression and were left out. Pparse describes other program references such as literal

values using the notation "@@". A reference to an literal string, character or number,

appears as "@@unsigned-lit" and a reference to a set appears "@@set".

Since many data transformations in programs involve assignment statements the

expression format for the parser result file resembles a Pascal assignment statement.

Pparse supports all Pascal operators. The parser lists the operator followed by a space

and the number of arguments associated with it. The convention used for representing the

arguments themselves lists the identifier (variable) followed by a space and the unit

associated with it.

7

C. THE PHYSICAL UNITS CHECKER

This program called unitcheck, requires two ASCII input files, the parser results

and a list of valid data transformations. Appendix B gives the code for unitcheck. A

sample page from an output file produced by unitcheck is shown in Appendix D. The

functional specification is the source of the valid data transformations. It is a database, of a

sort, that identifies valid ways in which units associated with variables can be combined to

form other units. This second input file is referred to as the rulebase for the testing tool.

A sample page for the rulebase is shown in Appendix C. The diagram in Figure 1 gives a

pictorial representation of the program.

The first thing unitcheck does is load the rulebase by calling the loadlist

function. loadlist in turn uses a function called read exp to load a parse tree for each

individual data transformation in the rulebase file. As it builds each tree it returns a

pointer to that tree and loadlist adds the tree into a linked list. load-list returns the

head of the list when it reaches the end of the rulebase file. This list represents valid data

transformations derived from the functional specification. unitcheck then opens the

parser result file and calls readexp to load a parse tree for each data transformation.

Each time readexp loads a tree, unitcheck calls the match function to evaluate the

validity of the units in the tree.

The match function has as its first parameter the head of the linked list created from

loadlist and its second parameter is the parse tree returned from the second call to

read exp. The match function immediately calls three functions that perform quick

checks on the parse tree. unitcheck uses these functions to validate parse trees that do not

require comparisons with the entire rulebase. The first function, fastcomparel

validates data transformations involving assignments of a variable to another variable with

the identical units or an assignment of an unitless literal to a variable, fastcompare2

8

traverses the parse tree and eliminates it if there are no units of measurement associated

with any of its identifiers. The last non-rulebase check, fastcompare3, validates a

parse tree if all of the identifiers within it have identical physical units and all the operators

are unit-preserving. It accomplishes this by calling a recursive function, traverse that

traverses the parse tree and based on each operator encountered, decides if the units are

consistent. If none of the quick checks validate the expression then the match function

calls compare exp to validate the expression against the rulebase.

, unitcheck [

fp2

liste

trr

loadnkist tree linked list,pI
o Is fp

tree

read exp match te

tree tree tree 1

tree

fat-omare I fast cornpare3 prtexp

fastcomparc2 tree, comparecexp
unit

traverse

Figure 1: Structure Chart for Unitcheck

9

The compare_exp, also a recursive function, takes as its parameters a parse tree

from the rulebase and the parse tree from the parser result file. It traverses both parse

trees and verifies that the nodes in each of the trees are identical by comparing the identifier

name and unit name at each node. If compare_exp finds two identical parse trees, it

signals the match routine that in turn prints a statement to the standard output denoting the

units in the expressi.n are valid. If compare exp traverses the two parse trees and finds

the structures are different or there exists any inconsistent units, it notifies the match

routine. If the match routine continues through the entire rulebase and does not find two

identical expressions, then it prints a statement denoting the expression from the parser

result file has invalid units.

D. SUMMARY

Using Pparse and unitcheck, a programmer can evaluate the variable data

transformations within a Pascal program. The rulebase for this evaluation may derive from

the rules of algebra, the program specification or hand-validated expressions from the

program source code. To measure the utility of this type of tool in practice, it was applied

to a set of eight versions of a Pascal program. The next chapter discusses that application

and its results.

10

III. RESULTS

A. INTRODUCTION

In the past there has been a lack of empircal research dealing with dimensional

analysis and units consistency. Furthermore, research that has been done was not of a

comparitive nature. This experiment involved building a static units-consistency analysis

tool to detect faults within programs and comparing the results with faults previously

detected by other testing techniques. Section B describes the program versions used in the

experiment. Section C describes the experiment procedure. The results of this research are

provided and summarized in Section D.

B. DESCRIPTION OF EXPERIMENTAL SUBJECT

This research used a set of eight program versions written from a single specification

for a combat simulation problem. An industrial specification obtained from TRW

(Dobieski, 1979) provided the base for the specification of a combat simulation called

CONFLICT (Shimeall, 1990). The specification is structured as a series of

transformations to convert input data to an internal state vector, use that state vector to

model combat, and transform the state vector to report combat results. It was the

implementation of that series of transformations that the unit-consistency analysis tool

evaluated in this experiment.

Upper-division computer science students performed all design and implementation

activities on the program versions of the CONFLICT Specification. At the time these

students were in a senior-level class on advanced software engineering methods. Two

students worked as a team to write each version. Each of the teams worked separately of

each other with minimal sharing of information between teams. The program versions

11

were developed to the point where unit testing would normally begin. Table 4.1 provides

information about the individual program versions.

TABLE 4.1: CONFLICT VERSION SOURCE PROFILE FROM
(Shimeall and Leveson, 1991, p. 178)

Version
Modules Source Lines Code Lines

1 72 7503 2414
2 56 3452 1540
3 41 1480 1201
4 57 3663 2003
5 28 1834 1544
6 72 3065 2206
7 75 2734 1978
8 57 1896 1331

A disjoint set of students detected faults in the programs using five different testing

techniques: code reading by stepwise abstraction, static data-flow analysis, run-time

assertions inserted by the development participants, multi-version voting, and functional

testing with follow-on structural testing. An administrator acted as final arbiter and decided

which reports were faults and which were false alarms (Shimeall and Leveson, 1991, p.

175). Table 4.2 in section D gives a total of these previously detected faults.

There are two factors that make the program versions of the CONFLICT

Specification suitable to study unit analysis. First, the assignment of physical units of

measurements to the variables in the CONFLICT Specification was straightforward, as the

variables model the physical world. Second, and most important, previous research on the

program versions provided the basis for comparison with other fault detection techniques,

specifically those studied in the previous experiment.

12

C. EXPERIMENT PROCEDURE

The purpose of this experiment was to develop a testing tool that detects faults

resulting from unit inconsistencies within programs and compare the results with a

previous study that disovered faults by different testing procedures. The experiment was

conducted in a series of steps, the first being the assignment of physical units to the

program versions. The next step was building up the rulebase. Once the rulebase was

built the unit-checking tool was executed on each program version. A unit clash occurred

when the axioms for algebraic manipulation of variables were followed and the physical

unit in the left-hand side of an equation did not match the units derived from the right-hand

side of the equation. The last step was the analysis of the output to determine if each unit

clash was a fault. At each step, reviews were done that validated experiment procedures

and data. The remainder of this section details each of the steps taken in the experiment.

The first step in the experiment was assigning physical units to global variables

within the CONFLICT Specification. The decision of what kind of unit to assign to each

variable was made based on the the specification itself. The system of measurement for the

unit assignments was arbitrarily decided to be metric. Once units were assigned to all

global variables, each program version was edited assigning units to appropriate

parameters, function-return declarations and local variables. Units were assigned to

parameters in the procedure or function declaration by adding them in the comment form

discussed in Chapter II. Function-return declarations were assigned units by appending the

function call with the appropriate unit, again in the comment form described in Chapter II.

Since some functions performed services of a general nature, such as returning a minimum

value, it was not possible to assign units to them. If a local variable was not associated

with a global variable within the CONFLICT Specification, it was not assigned a unit.

13

The unitcheck program was then used to check this program version with the

unitless-expression filtering mechnism disabled. Disabling this mechanism helped ensure

that all variables were properly assigned units. These initial results were then reviewed for

one more check to determine if units had been accidently left out or if any incorrect units

had been added. After the review, any needed modifications were made to the unit

associations in the source code of the program version.

Another problem that was addressed during the above process was how to build the

rulebase. Since the output of the unitcheck procedure was a list of data transformations

for the program version, a logical technique to build the rulebase was to evaluate each of

the transformations in the output and determine if it should be added to the rulebase. The

criteria for adding rules were: is it a valid rule and is it a rule that is likely to occur in other

versions. The CONFLICT Specification provided the functional requirements that

described variables and established the relationships between these variables. This was the

basis for the development of the rulebase. If the rule was in the CONFLICT Specification

it was then checked to ensure that algebraic manipulations followed appropriate

composition and cancellation rules. If a rule was not general enough to be likely to appear

in other program versions, it was left out of the rulebase. The rules that met the criteria

were added to the rulebase against which the other program versions would be checked.

Once a rulebase was established, a fully-filtered unit check was done. The result was

again evaluated manually, determining if there were any unit clashes. As unit clashes were

detected they were noted for further examination.

When all the program versions were checked, the unit clashes were evaluated to

ascertain if each unit clash could cause the program to fail. If a valid condition produced a

program failure from the clash then it was classified as a fault, otherwise it was left as a

unit clash. The reason for each clash was noted, for example, a clash that occured because

14

of the implementation of a particular version was classified as a coding unit clash. A final

review of each unit clash was done comparing them with previously detected faults that

were listed in the study by Shimeall and Leveson (Shimeall and Leveson, 1991, p 178).

This last review helped establish the validity of the research results.

D. ANALYSIS OF RESULTS

Three general categories of questions guided the analysis of this data. The first

category is did this testing technique reveal any faults that were not previously discovered

by the other testing techniques. The second category is what are the strengths and

weaknesses of the physical units checking tool. The final category is how can the tool be

improved or better used. These questions are discussed in the next three sections.

1. Faults Detected by the Tool

Table 4.2 is a summation of research results after conducting the test for

physical units consistency. The first two rows in Table 4.2 marked 'Total

Transformations' and 'Filtered Transformation', reveal that a large number of data

transformations were filtered out automatically. The parser generated the number of data

transformations shown in the first row. The unitcheck program then filtered out many

data transformations and reported the numbers in second row for further analysis. As

these first two rows in Table 4.2 show, the unitcheck procedure filtered between 66 to 90

percent of the initial data transformations.

The row marked 'Coding Unit Clashes' in Table 4.2 shows that the unit clashes

in the program versions of the CONFLICT Specification were usually the result of reuse of

variables in a different context or module. Most of these clashes were not classified as

faults within the program. However, there was one unit clash included that was found in

each program version and classified as a fault. This clash is discussed in more detail later.

15

The next row marked 'Specification Clashes' revealed there were unit clashes

that occurred because of inconsistencies within the CONFLICT Specification. These

clashes were not a surprise since the specification was not previously analyzed for physical

units consistency. The row marked 'Total Clashes' is the sum of the previous two lines

and gives us the figure for all unit clashes detected by our research including all unit clashes

that could result in a fault.

TABLE 4.2: RESULTS OF PHYSICAL UNITS-CONSISTENCY
ANALYSIS

1 2 3 4 5 6 7 8
Total Transformations 943 544 614 853 501 722 665 654
Filtered Transformations 96 128 64 131 148 246 222 167
Coding Unit Clashes 2 3 2 3 3 3 2 3
Specification Clashes 0 0 0 0 1 0 1 0
Total Clashes 2 3 2 3 4 3 3 3
Previous Known Faults 26 30 46 36 40 22 31 45
Previous Known Faults
Revealed by Clashes 1 0 1 0 0 0 1 0
New Faults Revealed
by Clashes 0 1 0 1 1 1 0 1

The first question answered by this data deals with the consistency of this

technique in detecting faults. The data shown in the rows marked 'Previous Known Faults

Revealed by Clashes' and 'New Faults Revealed by Clashes' in Table 4.2 show the

consistent detection of faults in each of the program versions. The class of faults detected

was quite narrow, relating to only one aspect of the specification. Further analysis revealed

that this fault class did indeed result from use of analagous variables and units in each

program version. It involved the numeric precision of a calculation specifically where the

sum of n copies of term may not be equal to the product of multiplying that same term by

n. This inequality results from the rounding mechanisms used in digital machines. An

16

inconsistent detection technique, multi-version voting, detected these faults in only three of

the eight program versions.

With this in mind, the next question is what will this technique consistently not

reveal about faults within the program versions. In many cases its just as important to

know which kinds of faults are not revealed by using a tool. This gives testers an idea

what techniques should be used in combinations so that deficiencies of one technique are

compensated for by using another technique for fault detection. This tool reported only

unit clashes occuring within data transformations. The row marked, 'Previously Known

Faults' provides the results from the previous testing research that gives a total of 276

faults that were previously revealed. Further analysis in this area found that 210 out of

those 276 involved no data transformations and hence would not be detected by the tool.

Out of the 66 left, unitcheck filtered out 52 faults due to data transformations that did not

involve a change of units. The filtering procedures were described in Chapter II and

involved transformations that contain unitless variables, transformations where an unsigned

literal is added to or subtracted from a variable, or transformations that contained identical

units. Of the 14 remaining known faults, 11 coincidentally involved legal unit

conversions.

The three remaining data transformations that were reported by unitcheck fell

into the category of previously detected faults. The tool detected these faults in three

different program versions of the CONFLICT Specification. These figures are shown in

the row marked 'Previously Known Faults Revealed by Clashes'. All of the previously

detected faults were revealed by multi-version voting. The procedure used in the previous

experiment for this testing method compared the results of three program versions, looking

for disagreement. This result naturally leads to the question of what gains there could be if

this testing tool were used in conjunction with other types of testing methods. The rows

17

marked 'Previou'y Known Faults Revealed by Clashes' and 'New Faults Revealed by

Clash' show that the units-consistency checking tool detected the fault consistently in all

program versions. The previous research testing technique of multi-version voting detected

these faults in only three program versions. These results show that this tool can be used

with other testing techniques and detect faults that are not redundant. Although the units-

consistency analysis revealed only a very restricted class of faults, it did in five out of eight

program versions detect a fault that had not been detected by other testing techniques that

used over 10,000 executions.

2. Strengths and Weaknesses of the Tool

A primary question in the minds of software development managers is the cost

involved with a testing tool. They are concerned with the cost of the tool itself, whether its

developed in house or purchased separately, and the cost of training testers to use the tool

effectively. An advantage of this tool is that it could be developed in house for imperative

languages by developing a parser or modifiying an existing one. The primary cost here is

in time, bu. . /en there the cost is minimum. A experienced tester could implement a units-

consistency checker in less than two months of full time work. As far as the cost of

administering the test to the individual programs this would depend on the length of the

program versions. For a program size of around 2000 lines of code it would take

approximately three to five days of full-time work if the programmer had to actually analyze

the requirements document for unit assignment, assign units in program versions, run the

test, and validate results. This time could also be reduced if units analysis were introduced

in the requirements and design phases because the tester would not have to perform the

steps of analyzing the requirements documents for unit assignment and assigning units in

the programs themselves. This use of the technique is described in greater detail below.

18

Another question that concerns program developers is are there aspects of this

testing technique that will determine whether it is useful or not to a particular problem area?

Scientific and engineering applications have long been able to use the technique of units

analysis for faster and more accurate progam development. It could also be very useful in

command and control applications where physical objects are manipulated. And lastly,

integrating units into business applications may prove to be very benefi-ial. There is no

limit for use of this technique in business applications because as long as units are assigned

consistently and the axioms of algebraic manipulation of variables are applied, a units-

consistency checking technique is applicable.

One last question that might concern a software development manager is how

likely are the testers to be mislead by using this technique? This testing technique detects

only a very narrow class of faults, specifically those that occur due to units that are

inconsistent within data transformations. Testers should be aware that when this technique

is applier;, faults are revealed, and can be eliminated, but this is a very restrictive set of

faults and their removal does not certify program correctness.

These questions address some issues that software development managers

might be concerned with, but as managers they are also looking for ways to better utilize

any tools and resources available to them, Questions that address these issues are

discussed in the following section.

3. Improvement and Other Uses of the Tool

The question of how to better uti! 7e resources is always of importance to any

manager regardless of what they are managing. The question with a technique such as

units-consistency checking is how can it be used to increase the reliability of software and

be more cost effective? The row in Table 4.2 marked 'Specifiation Clashes' revealed

physical units clashes within the CONFLICT Specification itself. This data indicates that a

19

technique of this sort could be beneficial when used to detect unit inconsistencies within

requirement and design documents. Reliability of software has become increasingly more

important and CASE tools that check consistencies in the earlier phases of development are

becoming more widespread. The capability for checking of units-consistency could be

added to these CASE tools. Howden outlines a formal system that checks for

consistencies within requirements and design documents in his work (Howden, 1981, pp.

103-105). The advantage of this is costs associated with detecting faults early on in the

development cycle are much less than when faults are detected later.

Another improvement to the units-consistency checking technique lies in the

interface analysis area. Interface analysis involves checking formal and actual parameters

for consistency. This technique has generally been done by a language processor. The

current version of the parser for units-consistency checking tool generated a data

transformation for each parameter being passed. It then checked the units-consistency

between formal and actual parameters. There were problems however because in some

cases comparisons were made of variables when they were of different unit types. An

example in the program versions of this experiment occured with a function that compared

two values and returned the variable with the minimum value. The tool detected no fault

when two variables with two different unit types were compared. The occurence of this

problem could be avoided by making improvements to the parser that enabled it to better

check parameters. All that is required for this type of interface analysis is a symbol table

and rules for judging co.isistency. Since a symbol table is inherent to a parser, the only

addition would be the rules for checking parameter consistency.

E. CONCLUSION

This chapter described the methodology used in conducting this research, as well as

the results of the experiment. A quesilon concerning the use of units analysis technique is

20

where is time likely to be lost. The process of using the tool in the experiment was iterative

in nature, meaning that the same steps were followed for each program version that was

tested. Some of these steps, such as assigning units within the requirements specification

and program versions, could be eliminated if units-consistency techniques are applied

earlier in the software development process. However, the process itself has to be

somewhat iterative to avoid mistakes on the part of the tester. Unit inconsistencies that are

reported at the various steps within the process should be compared with previous results

to prevent errors and validate results.

Some care should be taken when using the results of this experiment. Multiple

examinations by different individuals were conducted to check the results, but the

experiments was conducted by students, not professional programmers and testers. Just

one application was examined in this research and extensibility to other applications has yet

to be determined. Statistical significance of results was not addressed due to the lack of

population information about the number of faults occuring in programs or the class of

faults that appear most often in programs. In general there is a lack of historical data and

applicable theory in the study of faults that occur in programs and therefore statistical

significance was not able to be addressed.

The next chapter gives a summary of the significant results of this research. It offers

conclusions and recommendations to practioners concerning the results of this research and

finally discusses directions for future work.

21

IV. CONCLUSION

A. INTRODUCTION

The primary purpose of this research was to develop and apply a tool for units-

consistency checking and compare the results of using this tecnique with the performance

of other testing techniques in detecting faults in computer programs. This chapter

summarizes the significant results of this research in Section B. Section C offers

recommendations to practioners in applying techniques of this sort. Section D concludes

by giving suggestions for future research.

B. RESEARCH SUMMARY

The most significant result of this research is that it offers the first look at the relative

effectiveness of a units-consistency checking technique, comparing it with other testing

techniques. Although this technique deals with a very narrow class of fault detection, the

results did reveal that it was able to detect new faults that had not been detected by applying

other testing techniques and over 10,000 program executions. This technique was able to

consistently detect this zlass of faults. This fact is significant because a units-consistency

checking technique used in conjunction with other static analysis techniques may reduce the

issues to be explored during the dynamic analysis testing phase.

The last notable outcome of the study of this technique is support for its application

early in the software development cycle. If faults identified via unit inconsistencies are

detected during the requirements and design phases of development, it is less costly to

repair them than if they are detected in later phases of development.

22

C. RECOMMENDATIONS

The results of this research can help practioners in planning for software testing.

Chapter I discussed the conditions when it may be beneficial to apply static analysis

techniques. The first of those conditions was if faults were detected prior to execution of a

program. The results show consistent detection of a narrow class of faults. The second

condition was if the technique could detect faults early in the software developmept

process. The unit clashes found in the CONFLICT Specification show that if a units-

consistency technique is applied during the requirements and design phases of software

development faults can be detected early. Adding units of measurements into the

documentation during those phases of development would also help organize information

about variables to be used in the implementation and testing phases and increase readability.

The third condition was if the class of faults detected was not redundant. The results show

that it is not redundant effort to apply this with other techniques. Eliminating the class of

faults that are associated with units inconsistencies addresses the fourth condition, reducing

the overall testing effort. Of course if the technique for units-consistencies is incorporated

into CASE tools that can be used during the requirements and design phases, checking for

units-consistency will become much easier. Based on this data, there is no reason to

reject use of units-consistency analysis.

This technique should be applied in conjunction with other testing techniques simply

because of the narrow class of faults that it is capable of detecting. The experience

described in the previous chapter suggests areas where caution is needed in applying this

technique, particularly in determination of which reports are faults and which are false

alarms.

23

D. FUTURE WORK

There are several avenues of research that can be examined in the future as follow-up

studies to this work. The first question that could be answered is can the idea of

consistency be extended to include more general relationships than physical units of

measurement, thus broadening the class of faults that can be detected. The use of units in

this research allows for distinction between values. At a qualitative level there are values

associated with program variables that need to be treated differently, e.g., a null pointer as

opposed to all other pointer values. Detection of these values for variables could be

included and would broaden the class of faults detected.

Another potential area of research might involve checking for units-consistency

beyond a single data transformation. Conditional statements, blocks of assignment

statements, and consistency between modules are all areas where there is room for units-

consistency checking. Checking for units-consistency in these cases becomes increasingly

more difficult because the analysis is taken away from a specific location and has to address

under which paths and conditions would units remain consistent. One possible benefit in

exploring this approach further is that information can be obtained about declarations and

references of variables.

The potential for using a unit analysis technique in conjunction with CASE tools has

been mentioned in several sections of this work. This use could prove to be the most cost

effective in software development because inconsistencies, therefore potential faults, are

eliminated early in the development process.

Further work can be done to examine how information involving units can be

maintained in very large software projects. Questions that should be addressed include

how should the data be divided, what kind of database structure is most advantageous for

this type of information and would lend itself to updates made during the course of

24

development. It is critical for very large software projects that information concerning units

and variables be accessable to multiple users. Additionally, these users may have little

contact with each other over the course of development. Research in this area could help

solve problems involving accessability as well as issues involving accuracy and timeliness

of data inherent in large software projects.

Finally, further comparisons can be done to statistically establish the limitations and

gains of using a units-consistency analysis technique. The analysis of faults that occur in

software is a relatively new field of study and data dealing with this class of fault detection

needs to be explored more throroughly. This research has established some initial

observations, but many more questions are left unanswered.

25

APPENDIX A

PASCAL PARSER

Yacc specification for Pascal
Original specification taken from:

yacc grammrar for Pascal based on ISO standard
Cornpi'2r Design and Construction: Tools and Techniques
Arthur B. Pyster
Van Nostrand Reinhold Company
Copyright 1988
ISBM 0-442-27536-6
pp 159-163

/* Data structure for tokens *
%unionI

int t int;
char *T _str;
struct tnode *t node;
char *idlist[256J;

Declaration of all token types
%token <t-int> TOK -AMPERSAND
%token <t int> TOK AND
%token <t int> TOK -ARRAY
%token <t-int> TOK-ASSIGN
%token <t int> TOK BEGIN
%token <t int> TOK CASE
%token <t int> TOK CLOSEBRACKET
%token <t int> TOK-CLOSEPAREN
%token <t int> TOK COLON
%token <t int> TOK CO"-A
% token <t int> TOK -COMMENT1_START
itoken <t int> TOK COM1,1NT1 EI;D
%token <t int> TOK COMMENT2 START
%token <t int> TOK CON2.'ENT2 END
%token <t int> TOK-CONST -

%token <t int> TOK DIV
%token <t int> TOK DIVIDE
%token <t int> TOK DO
%token <t int> TOK DOTDOT
%token <t int> TOK DOWNTO
%token <t int> TOK ELSE
%token <t int> TOK END
%token <t int> TOK EQUAL
%token <t int> TOKFILE
%token <t int> TOK FOR
%token <t-int> TOK FORWARD

26

%token <t int> TOK FUNCTION
%token <t int> TOK-GOTO
%token <t int> TOK GREATERTHAN
%token <t int> TOKGREATERTHANOREQUALTO
%token <t int> TOK IDENTIFIER
%token <t int> TOK IF
%token <t int> TOK IN
%token <t int> TOK LABEL
%token <t int> TOY LESSTHAN
%token <t int> TOK LESSTHANOREQUALTO
%token <t int> TOK MINUS
%token <t int> TOK MOD
%token <t int> TOK MULT
%token <t int> TOK NEWLINE
%token <t int> TOKNIL
%token <t int> TOE NOT
%token <t int> TOKNOTEQUAL
%token <t int> TOEOF
*token <t int> TOE OPENBRACKET
*token <t int> TOKOPENPAREN
%token <t int> TOKOR
Qtoken nt int> TOE PACKED
%token <t int> TOE PERIOD
%token <t int> TOK PLUS
%token <t int> TOE POINTER
%token <t int> TOY PROCEDURE
%token <t int> TOK PROGRAM
%token <t int> TOERECORD
%token <t int> TOEREPEAT
%token <t int> TOYSEMICOLON
%token <t int> TOKSET
%token <t int> TOESTRING
*token <t int> TOE THEN
stoken <t int> TOK TO
Atokei <L in> TurK iTPE
*token <t int> TOEKUNITI
%token <t int> TOK UNIT2
K~oken nt int> TOK UNKNOWN
*token nt int> TOEUNSIGNED INTEGER
*token <t irnt> TOK UNSIGNED REAL
*token <t int> TOEUNTIL -

*token <t int> TOE VAR
%token <t int> TOE WHILE
%token <t int> TOE WHITESPACE
*token <t int> TOE WITH
/* Standard or Pre-Defined identifiers ~
*token <t int> TOE BOOLEAN
%token <t int> TOE REAL
%token <t int> TOE INTEGER
%token <t int> TOECHAR
/* Standard Procedures and Functions *
%token <t ir< TOE ABS
Atoken <t int> TOE AR!TAN
*token <t int> TOE ARGC
*token <tint> TOE ARSGV

27

%token <t int> TOK CARD
%token <t int> TOK7CHR
%token <t int> TOK CLOCK
%token <t int> TOKCOS
%token <t int> TOK DATE
%token <t int> TOK DISPOSE
%token <t int> TOK EOF
%token <t int> TOK EOLN
%token <t int> TOK EXP
%token <t int> TOK EXPO
%token <t int> TOK FLUSH
%token <t int> TOK GET
%token <t int> TOK HALT
%token <t int> TOK LINELIMIT
%token <t int> TOK LN
%token <t int> TOE MESSAGE
%token <t int> TOK NEW
%token <t int> TOK NULL
%token <t int> TOY ODD
%token <t int> TOK ORD
%token <t int> TOKPACK
%token <t int> TOY PAGE
%token <t int> TOK PRED
%token <t int> TOK PUT
%token <t int> TOK RANDOM
%token <t int> TOK READ
%token <t int> TOK READLN
%token <t int> TOK REM4DVE
%token <t int> TOK RESET
%token <t int> TOK REWRITE
%token <t int> TOK ROUND
%token <t int> TOK SEED
Ytoken <t int> TOK SIN
K~oken <t int> TOK SQR
%token <t int> TOK SQRT
Atoken <t int> TOK STLIMIT
%token <t int> TOK SUCC
%token <t int> TOKSYSCLOCK,
*token, <t int> TOKTEXT
*token <t int> TOE T IM.E
Itoken <t int> TOE TRUNC
%token <t intz' TOEUNDEFINED
%token <t int> TOE UNPACK
%token <t int> TOK WALLCLOCK
%token <t int> TOKWRITE
*token <t int> TOEWRITELN
/* Precedence and Associativity among~ or'rators
%left TOKEQUAL TOE LESSTHAN TOE GREATERTHAN TOE NCTEQrJAL
TOK LESSTHANOREQUALTO TO KOAET1NEQA TOEIN
%le-ft TOK PLUS TOE MINUJS TOK OR
%left TOE MULT TOK DIVIDE TOK DIV TOE -AND- TOE MOD
%right TOK NOT - -

*left TOE PERIOD
%right TOKELSE TOE THEN
%right UN4ARY

2S

/* declare non-terminal types *

%type <t str> variable trailers
%type <t str> variable trailer-funcparm list
%type <t str> variable
%type <t str> identifier
%type <t str> relational op
%type <t str> add op
%type <t str> mult-op
%type <t-str> unaryop
%type <t str> unit -deal
%type <t str> formalparms-trailer
%type <t node> factor
%type <t node> signed-factor
%type <t-node> expression
%type <t node> simple expression
%type <t node> term
%type <t node> id list
%type <t node> type
*type <t node> packa ble type
%type <t node> ordi nal type
%type <t node> field list
%type <t -node> var field list
%type <t node> const-field list
%type <t node> tag
%type <t-node> cases
%type <t -node> cases-trailer
%type <t -node> opt formaljparm list
%type <t node> formalparms
%type <t node> opt return

/ ******************************YACC Spec1'f 1'cal.ion

program.
TOF PROGRA:. identifier unit deczl TOK OPENPAREN

ic list TOKC CLOSE PARE, TOK SEMI11COLO*,,

TOS --C;
for (i = 0:1i < MYX TABSIZE; i++)
strcpy(syirntab[TOS'ji] .nodiename,EMPTTY);

/* initializes syatrol ta-ble */'

templ=(treenode *)CA-LLOC(l,sizeof(treenode),sproa ram.-.);
strcpy(templ->nodename, $2);
strcpy (ternpl->unitnare, $3);
add sym(templ,symtab[TOSI);
for (i = 0; i < MAX TABSIZE; i+4)

strcpy (typetab [i I . nodenar-e,EMFTY)
/*i nitiallzes type tale

blork TOK PFRTOD

10 list
id list

id list

29

identifier unit-deci

templ=(treenode *)CALLOC(l, sizeof(treenode),
"dsty(tml-ndeae,$)
strcpy (templ->nitname, $2);

$$ = tempi;

identifier unit -deci TOK COMMA id-list
ftempl=(treenode *)CALLOC(l,sizeof(treenode),

"id list2');
strcpy(templ->nodename, $1);
strcpy (templ->unitname, $2);
templ->rightchild =$4;
$$ = tempi;

block
opt_labels opt -constants opt types
opt variables opt~pf heading dcl s
TOKBEGIN
statements TOKEND

opt_labels
TOKLABEL integer_list TOK SEMICOLON

integer-list
integer
integer TOK_COMMA integer-list TOK SEMICOLON

integer
TOKUNSIGNED INTEGER

opt-constants
TOKCONST constant-dcls

opt-types
TOK TYPE

for (deftop=O; deftop<300; deftop++)
deferred ~def top] =NULL;

deftop=-l;

type-dcls

for (;deftop>=O; deftop--)
temrpi

type lookup (deferred[deftop] ->leftchiid-
>nodename);

if (tempil NULL)
delferred~deftop]->leftchild tem,--,

deferredtdeftopl->marked =1;

break link(templ);

30

clear mark (tempi);
deferred~deftopl->marked =0;

opt-variables
TOKVAR variable-dcls

optpf-headingdcl s
opt~pf heading dcls procfunction heading
TOKSEMICOLON block-directive TOK SEMICOLON {TOS--;)

block-directive
block
directive

directive
TOKFORWARD

statements
statement
statements TOKSEMICOLON statement

constant-dcls
identifier TOYEQUAL constant unit-decl TOKSEMICOLON

templ=(treenode *)CALLOC(l, sizeof (treenode),
"constant dcls");

strcpy (templi->nodenane, $1);
strcpy (templ->unitname, $4);
add sym(templ,symtabiTOS]);

constant-dcls ident'fier TOKEQUAL constant unit-decl
TOKSEMICOLON

t em p 1 t (r ee ncd e

*)CALLcC(l,sizeof(treenode),"constant dcls");
strcpy(templ->nodename, $ 2);
strcpy (terpl->unitname, $5);
add symn(templ, symtab[TOSI);

variable dcls
id list TOKCOLON type TOK-SEMICOLCN

current = $1;
while (current I=NULL)

next =current->riahtchild;

31

current->rightchild = NULL;
add -sym(current, symtab[TOS]);

if ((strcnp($3->nodename,"[]") H0) &&
(strcmp($3->nodename,"'.") H0) &&
(strcmp($3->nodename,""") H0))

build syrn(current->nodenarne, $3->leftchild);
else

build sym (current->nodenamne, $3);
current = next;

variable -dcls id -list TOK COLON type TOK SEMICOLON
(current = $2;

while (current !H NULL)

next = current->rightchild;
current->rightchild = NULL;

add sym(current, symtab[TOSI);
if ((strcmp($4->noaenaine,"[]') 0) &&

(strcmp($4->nodename,".") H0) &&
(strcmp($4->nodename,"^") H0))

build-sym(current->nodename, $4->leftchild);
else

build syn(current->nodenane, $4);
current = next;

statement
opt-label unlabeled-statement

opt-label
TOK UNSIGNED INTEGER TOK COLON

unlabeled-statement
variable unit decl TOKASSIGN expression
{printf ("f %d\n",yylineno);

if (strcmp($2,EMPTY) H= 0)
printf(":= 2\n%s %s\n",$1,$2).

else

unit = lookup($l); /*lookup returns unit name *
printfC":= 2\n%s %s\n", $1,unit);

rhs = print node($4);
if (rhs == FALSEI) printf ("somethingj is wrong\n");
printf (") \n")

identifier

parn.-op =0;

for (i = ;i < MAXSIZE; i+*)
curparms[i] = NULL;

/* initializes parameter table *

32

temp, id =parrn lookup($1);
if (temp id !=-NULL)
tempid = temp id->rightchild;

optprocjarameter list
TOKBEGIN

parmtop =0;

for (i = 0i < MAXSIZE; i++)
cur~parms~i] = NULL;

/* initializes parameter table *

statements TOK END
TOKIF

parmtop = 0;

for (i = 0;i < MAXSIZE; i++)
curparms~i] = NULL;
/* initializes parameter table *

expression opt-else
TOEWHILE

parmtop =0

for (i = 0: < MAXSIZE; i+t)
curparms[i] =NULL;

/* initializes parameter table ~

expression TOKDO statement
TOKCASE

parmtop = 0;

for (i = 0;i < MAXSIZE: i++)
curjarns[i] = NULL;

/* initializes parameter table *

expression TOKOF case-body TOEEND
TOK REPEAT

parmtop =C;
for (i = 0i < MAXSIZE; i++)
curparms~i] =NULL;

/* initializes parameter table *

statements TOE UNTIL expression
TOKFOR

parfltop =C

for (i = ;i < MAXSIZE; i++)
cur~parms~i] = NULL;

/* initializes parameter table *

identifier TOY-ASSIGN expression
direction

33

parrntop =0;

for (i = ;i < MAXSIZE; i++)
curjparms~i] = NULL;
/* initializes parameter table *

expression TOKDO statement
I TOK WITH variable list TOK DO statement
I TOK-GOTO TOKUNSIGNEDINTEGER

opt_else TOK -THEN statement TOK ELSE statement
I TOKTHEN statement

variable-list
variable

I variable--list TOK_COMMA variable

constant_ list
constant

i constant-list TOK_COM1,A constant

case-body
constant-list TOE COLON
statement case-trailer

case-trailer
TOE SEMICOLON

I TOKSEMICOLON case body

direction
TOE DOWNTO

I TOKTO

optyproc~parameter -list
TOKOPENPAREN

expression_opt_formats lIist TOKCLOSEPAREN

expression opt formats -list
expression-opt -formats
expression opL: formats list TOE _C0MA expression opt formats

expression opt formats
expression opt-formats

if (parmtop >= 0 && cur-parmsparmtop] ! NULL)

printf('{(%d\n"', yylineno);
printf(":= 2\nis %s\n",curyparmsrparmtopi->nodename,

curparns [parmtop] ->unitname);
rhs = print node(Sl);

curparms [parrrtopj = c~rarms [parmtopj ->rightc~id;

34

opt formats
TOKCOLON expression
TOK_ COLON expression TOKCOLON expression

expression-list
expression

if (parrntop >= 0 && curjparms[parmtop] !=NULL)

printf("{ %d\n",yylineno);
printf(":= 2\n%s %s\n",cur~parms[parmtop->nodenane,

cur~parms [parmtop] ->unitname);
rhs = print_node($l);

curparms [parmtop] = cur~arns parmntop] ->rightchild;
printf("}\n");

expression list TOKCOM~A expression

if (parmtop >= 0 && curyarms[pa-mtopJ N= ULL)

printf('{ %d~n",yylineno);
printf(":= 2\n%s %s\n",cur-parms~parmtopl->nodename,

curyparms parmtop] ->unitname);
rhs = print_node($3);

curparms parmtop] = curparms [parmtopl ->rightchild;
printf("J\n");

expression
expression relational-op simple expression
{t e mp 1 (tr ee n o de

*)CATLOC (1,sizeof (treenode), "expression");
strcpy (templ->nodename, $2);
templ->leftchild =$1;

templ->rightchild =$3;

$$ = tem-,pl;

simple-expression {$$ $1;)

simple-expression
term f$$ = $1;j
simple -expression add-op term

templ = (treenode *)CALLOC(l,sizeof (tre r-,7 ii),'2r1
exp");

strcpy (templ->nodename, $2);
templ->leftchild =$1;

templ->rightchild =$3;

$$ = templ;

35

term
term mult op signed-factor

temnpi = (treenode *)CALLOC(1,sizeof(treenode) ,"term"-);
strcpy(templ->nodename, $2);
templ->leftchild =$1;

ternpl->rightchild =$3;

$$ = tempi;

signed-factor f$$ = $1;j

signed-factor
unary op factor

tempi = (treenode
*)CLLO(,sizeof(treenode),wsigned factor");

strcpy(texnpl->nodename, $1);
templ->leftchild =NULL;

templ->rightchiid $2;
$$ =tempi;

factor {$=$;

unaryop
unaryop
Itxnp=CALLO ((MAXSIZE) .1, "unary opi");
strncpy(tmp,yytext,MAXSIZE);

TOKPLUS %prec UNARY
f$= tmp;}

unaryop
trnp=CALLOC((MAXSIZE) ,1,"unary op2"');
strncpy (tmp, yytext, MAXSTZE);

TOK-MINUS %prec UNARY
($$=- tmp;}
unaryopp

tmp=CALLOC ((MAXSIZE) .1, "unary op3");
strncpy (tmp, yytext, MAXSIZE);

T0K NOT %prec UNARY
f$$ = tmp;}

txnp=CALLOC ((MAXSIZE) .,"unary op4"');
strncpy(trnp,yytext,MAXSIZE);

TOKPLUS %prec UNARY
$$= tmp;j

tmp=CALLO ((MAXSIZE) .,"unary op5"');
strncpy(tlnp,yytext,MAXSIZE);

TOKMINUS %prec UNARY
1$= tmp;}

36

trnp=CALLOC ((MAXSIZE) .,"unary op6");
strncpy(tmp,yytext,MAXSIZE);

TOK NOT %prec UNARY
1$= tmp;}

factor
identifier

tepid = parm -lookup($l);
if (temp_id != NULL)

parmtop++;
curyparms ~parrntop] = temp id->riahtchild;

variable-trailer_func~parn list unit-deci

tempi = (treenode *)CALLOC(l,sizeof(treenode),
"factori");

strcpy (templ->nodename, $1);
strcat (templ->nodename, $3);

strcpy (templ->unitname, $4);
if (strcmp(templ->unitnane,EMPTY) ==0)

unit =lookup(templ->nodename); /*lookup returns
unit-name *11

strcpy (templ->unitname,unit);

$$ =templ;

TOKOPENPAREN expression TOK_-CLOSEPAREN {$$ = $2;)
unsigned-literal unit-deol

templ = (treenode *)CALLOC(l, sizeof (treenode) , factor2");
strcpy (templ->unitname, $2);
strcpy (templ->unitname, "@@unsigned-lit');
$$ = templ;

TOKOPENBRACKET opt elipsis list TOKCLOSEERACKET
unit-deci

templ =(treenode *)CALLOC(l,sizeof(treenode),
"factor 3");

strcpy (templ->unitname, $4);
strcpy (ternpl->unitname, "@@set");
$$ = templ;

unit-deci:
TOK_-UNITl identifier TOKCOMMENTIEND

f$= $2;)
TOK_-UNIT2 identifier TOKCONZTNT2 END
f$$= $2;)
1$ EMPTY;}

37

variable-trailer funcparn list
variable trailers ($$ = $l;j
TOKOPENP APEN expression list TOKCLOSEPAREN
(if (parmtop>O1 parmtop---; $$ = EMPTY;j

opt_elipsis-list
elipsis_list

elipsis list
elipsis
elipsis list TOKCOMMA elipsis

elipsis
expression
expression TOKDOTDOT expression

relational op
trnp=CALLOC((MAXSIZE), ,l relational opi");
strncpy (tmp,yytext,MAXSIZE);

TOKEQUAL f$$ =tmp;)

txnp=CALLOC((MAXSIZE) ,l, "relational op 2 ");
strncpy (tmp,yytext,MAXSIZE);

TOK GREATERTHAN ($$ = tmp;1

tmp=CALLOC((MAXSIZE) ,l, "relational op3");
strncpy (tmp,yytext,MAXSIZE);

TOK GREATERTHANOREQUALTO {f$$ =txnp;j

tmp=CALLOC ((MAXSIZE) .,"relational op4");
strncpy (tmp,yytext,MAXSIZE);

TOKIN {$ tinp;)

tmp=CALLOC ((MAXSIZE), 1, "relational op5");
strncpy (tmp,yytext,MAXSIZE);

TOKLESSTHAN f.$$ = tmp;)

Itmp=CALLOC ((MAXSIZE) .,"relational op6");
strncpy (tmp, yytext,MAXSIZE);

TOKLESSTHANOREQUALTO {$$ = tmp;}

trnp=CALLOC((MAXSIZE),'relational op7"');
strncpy (trp, yytext,MAXSIZE);

TOK NOThQUAL ($$ =tmp;}

add op

38

trp=CALLOC((MAXSIZE),l,"add opi");
strncpy (trp,yytext,MAXSIZE);

TOKMINUS {$$ = tmp;j

tmp=CALLOC(C(MAXSIZE) .,"add. op2");
strncpy (tmp,yytext,MAXSIZE);

TOK OR {$$ = txnp;}

tmp=CALLOC(C(MAXSIZ) , 1, "add op3");
strncpy (tmp,yytext,MAXSTZE);

TOKPLUS f$$ =tmp;}

multocp
tmp=CALLOC((MAXSIZE) ,l, "mult opi");
strncpy (tmp, yytext,MAXSIZE);

TOK AND I$$ =trrp;}

trnp=CALLOC((MAXSIZE), 1, "mult op2");
strncpy (trp,yytext,MAXSIZE);

TOKDIV{$$ = trnp;}

tirp=CALLOC(C(MAXSIZE) 1, "mult op3");
strncpy (tnp, yytext, MAXSIZE);

TOK DIVIDE{$$ = tmp;}

tmp=CALLOCC(MAXSIZE),l, "'mult. op4");
strncpy (tmp, yytext,MAXSTZE);

TOKMOD{$$ = trnp;}

trp=CALLOC((MAXSIZE),l, "'mult op5");
strncpy (tmp, yytext,MAXSIZE);

TOKMULT{$$ = tmp;)

variable
identifier variable trailers
{tmp strcat($l,$2T;
$$ =trnp;

variable-trailers
TOK OPENBRACKET {parrntop++; curparms [parmtopl NULL;)I

expression list {parmtop--;}
TOKCLOSEBRACKET variable trailers

{tmpl = CALLOC((Strlen($6)+3),l,"var trailerl");
tmpl = strcpy(tmpl,"[]");

tmpl = strcat(tmpl,$6);
free ($6):

39

$$ = tmpl;
I
TOK PERIOD identifier variable trailers
{trnipl = CALLOC((Strlen($3)+strlen($2)+2),l,"var trailer2");

tmpl = strcpy(trnpl,".");
trnpl = strcat(trnpl,$2);
tmpl = strcat(trpl,$3);
free ($2);

free ($3);
$$ = trnpl;

TOKPOINTER variable trailers
{tinpl = CALLOC((strlen($2)+2),l,"var trailer3");

trnpl = strcpy(trnpl,"-");
tnipl = strcat(txnpl,$2);

free ($2);
$$ =tmpl;

{,~printf ("Default rule\n"); *
trnpl = CALLOC((l),l,"var trailer4"');

*Uapl= I \0,
$$ = unpl;

constant
TOK_-PLUS unsigned constant %prec UJNARY

I TOKMINUS unsigned -constant %prec UNARY
unsig-ned constant

unsigned-literal
TOKUNSIGNEDREAL

I TOKUNSIGNED-INTEGER
I TOK STRING

TOKNIL

unsigned-constant
identiftier
unsigned-literal

type
TOK_-POINTER unit decl identifier
{ternpl = (treenode *) CALLOC(l,sizeof(treenode) ,"type");

strcpy(templ->nodename,""");
teinpl->leftchild =type lookup ($3);
templ->rightchild =NULL;

if (terpl->leftchild == NULL){
/* type not yet defined */
templ->leftchild = (treenode *

CALLOG(l,sizeof(treenode),*"deferred type");
strcpy (templ->leftchild->nodename, $3);
deferred(++deftop] = tempi;

strcpy (templ->unitname, $2);
$$ = ternpl;

40

ordinal type
($= sfl

optypacked packable type
($= $2;1

packable-type
TOK -ARRAY TOK_-OPENBRACKET ordinal-type list
TOKCLOSEBRACKET unit-deci TOK-OF type

t emp 1 t (r ee nocd e
*)CpJLCC(l,sizeof(treenode),packabletypel");

strcpy (templ->nodename, "H");
strcpy (templ->unitname, $5);
ternpl->leftchild = $7;

/* firnd out if leftchild is a namned type, and
substitute *

/* definition for type name ~
if (strcmnp(ternpl->leftchild->nodename, "[1") '=0 &&

strcrnp(terpl->leftchild->nodefla~e," ") '=0 &&
strcxnp(templ->leftchild->nodename, ".") '=0 &&
terp->leftchild->leftchild !=NULL &&
templ->leftchild->rigjhtchild ==NULL)

templ->leftchild= templ->leftchild->leftchild;
$$ =temnpi;

TCIK RECORD unit-decl field-list TOKEND

t e mp 1 (t ree n od e
*)CALLOC(1, sizeof(treenode) ,"packable type2");

strcpy (templ->nodena~me,".");
strcpy(templ->unitname,$2);
templ->leftchild = $3;

$$ = tempi;

TOKFILE unit-decol TOKOF type

tenpl= (treenode
*)CALLOC(l,sizeof(treenode),"packable type3l");

strcpy (ter,.pl->nodename, "^") ;

strcpy (terpl->unitname, $2);
templ->leftchild = $4;
$$ = tempi;

TOKSET unit-decl TOK OF ordinal-type

templ= (treenode
*)CALLOC('L,sizeof(tlreenode),"packable_type4");

strcpy (templ->nodename,EMPTY);
strcpy (templ->unitname, $2);
$$ = tempi;

ordinal type_ list
ord-inal type

41

ordinal_type_list TOK CONIMA ordinal type

ordinal type
identifier unit-decl

t e mp 1 t (r ee n od e
*)CALLOC (1, si-e-f (treenode) , ordinal typel");

if ($1 == EMPTY) strcpy(ternpl-
>nodename, "@@predefined");

else strcpy (templ->nodenane, $1);
strcpy (templ->untname, $2);
temp2 = type lookup(templ->nodenane);
if ($2 = EMPTY && temp2 !=NULL)
/* unitname is empty, so copy it from typetab ~

strcpy(templ->unitname, temp2->unitname);

templ->leftchild = temp2;
$$ =tempi;

TOK_-OPENPAREN id-list TOKCLOSEPAREN unit decl

current = $2;
while(current !=NULL)

strcpy (current->unitnane, $4);
next = current->rightchild;
current->rightchild =NULL;

add syrn(current~symtabLTOS]);
current = next;

t e mp 1 t (r ee n od e
*)CPILOC(l,sizeof(treenode), "ordinal type2");

strcpy (templ->nodename, '@@enurnerated");
strcpy (templ->unitname, $4);
$$ = tempi;

constant TOKDOTDOT constant unit decl

t empl (t r e en oc e
*)CALLOC(i,sizeof(treenode),"ordinaltype3"),

strcpy (ternpl->nodename, "@@subrange");
strcpy (templ->unitnane, $4);
$$ t 5 p1

field-list const -field-list TOKSEMICOLON var-field-list
fcurrent =$1;
if (current != NULL)

while (current->riqhtchild !=NULL)
current = current->rightchild;

current->rightchild = $3;
1* put var -field-list at end of const-field-list
$$ = $1;

/* return head (const field list) of new list *

42

else A$ = $3;
/* const--field--list is null, so return var field-list as

new list*/

I const field list f$$ = $1;j
1 const field list TOK SEMICOLON {$$ =$1;j

1 var field list f$$ =-$l;)
var field-list: TOKCASE tag TOK_OF cases

{texnpl = $2;
if (templ !=NULL)
ternpl->rightchild = $4;

else teinpi = $4;
$$ = terrpl;j

const field-list:
id -list TOKCOLON type

current =$1;
while (current != NULL)

current->leftchild = $3;
/* find out if leftchild is a naneci type, anj

substitute *

V* definition for type name *

if (strcmp(current->leftchild->nodename,"[]") ?=Q &&
strcmp(current->leftchild->nodename, "'") !=0 &&

strcrnp(current->leftchild-->nodename,".") !=C &&
current->leftchild-->leftchild NULL &&
current->leftchild->rightchild ==NULL)

current->leftchild= current->leftchild->leftchild;
if (current->unitname == EMPTY)
strcpy (current->unitname, current ->leftchild-

>unitname);
current = current->rightchild;

$& = $1;

const field list TOK -SEMICOLON id-list TOK COLON type

current = $3;
while (current != NULL)

current->leftchild = $5;
/* find out if leftchild is a named type, and

substitute *

/* definition for type name ~
if (strcmp(current->leftchild->nodename,"[1')!=0 &

strcmp(current->leftchild->nodename,"") '= &&
strcnip(current->leftchild->nodenarne,".") =0 &&
current->ieftchild-->leftchild !=NULL &&
current->leftchild->rightchild ==NULL)

currcnt->lcftchdld= current->leftchild->leftchild;
if (crrent->unitname ==EMPTY)
strcpy (current->unitname, current->leftchild-

43

next = current;
current = current->rightchild;

next->rightchild = $1;
$$ = $3;

tag
identifier {$$ = NULL;} /* really type

identifier */
identifier unit decl TOK COLON type

templ=(treenocde *)CALLOC(l,sizeof(treenode),"tagl);
strcpy(templ->nodename, $1);
strcpy(templ->unitname, $2);
templ->leftchild = $4;

/* find out if leftchild is a named type, and
substitute */

/* definition for type name */
if (strcmp(templ->leftchild->nodename,"[]") !=0 &&

strcmp(templ->leftchild->nodename, "'.) !=0 &&
strcmp (templ->leftchild->nodename, ".") !=0 &&
templ->leftchild->leftchild != NULL &&
templ->leftchild->rightchild NULL)

templ->leftchild = templ->leftchild->leftchild;
$$ = tempi;

cases
constant list TOKCOLON TOKOPENPAREN field-list

TOK CLOSEPAREN cases-trailer
(current = $4;
if (current != NULL) I
while (current->rightchild != NULL)

current = current->rightchild;
current->rightchild = $6;
/* put cases-trailer at end of fieldlist */

$$ = $4;
/* return head of new list */

else $$ = $6;
/* field-list is null, so return cases-trailer as new list

cases trailer
TOK SEMICOLON cases
f$$-= $2;}

1 TOK SEMICOLON
($$-= NULL;)
$ = NULL;)

procfunction heading
TOK PROCEDURE identifier unit decl opt formal parm list

TOS++;

44

for (i = O~ < MAX TABSIZE; i++)
strcpy(syrntab[TOST[i] .nodename,EMPTY);

ternpi=(treenode *)CALLOC(l,sizeof (treenode) , procedure'l);
strcpy (templ->nodenane, $2);
strcpy (templ->unitnane, $3);

add syrn(templ, symtab[TOS]);
texnpl->rightchild = $4; /* CONNECTS PROC W/PARMS *

add sym (templ,paramtab);

TOKFUNCTION identifier unit deci opt formalar list
opt return

for (i = O;i < MAX TABSIZE; i++)
strcpy (symtab[TOST [i] .nodenaxne,EMPTY);

ternpl=(treenode *)CALLOC(l,sizeof(treenode),"function');
strcpy (templ->nodename, $2);
strcpy (templ->unitname, $3);

add syn (temrpi, symtab VIOS I) ;
templ->rightchild =$4; /* CONNECTS FtJNC W/PA.RMS ~
ternpl->leftchild =$5;

add-sym (+I-ernp, pararn tab)

opt forralyparm list
TOK7OPENPAREN {temp2 =NULL; } forrnalyarns TOKCLOSEPAREN
$$ temp2;

{$$ =NULL;

formaljparns
opt-var id list TOKCOLON formlakparms_trailer

fcurrent = $2;
templ = type lookup($4);
while (current !=NULL)

add sym (current, symtab[TOSI);
if (templ !=NULL)

build sym(current->nodename, templ);
next =current;

current =current->rightchild;

if (next 1=NULL)
next->rightchild = temp2;
tenp2 = $2;

$$ = NULL; /* unused *

procfunction -heading procyparm trailer
$$ = NULL; /* unused */I

opt-var
TOKVAR

f o rralparmrs trailer

45

identifier proc~parm Ttrailer I$$ = $1;j
cas procparm trailer I$$ = EMPTY;}

procparn-trailer
TOKSEMICOLON forrnal~parms

cas
opt packed TOKOPENBRACKET index type_spec_ list

TOKCLOSEBPACKET TOKOF identifier
I opt packed TOK OPENBRACKET index type spec list

TOKCLOSEBRACKET TOKOF identifier cas

optpacked
TOKPACKED

index type spec list
identifier TOKDOTDOT identifier TOKCOLON identifier

opt-return
TOKCOLON identifier

temnpi = type lookup($2j);
if (tempi == NULL)I

tempi = (treenode *
CALLOC (1,sizeof (treenode) ,"opt return");

strcpy (templ->nodename, $2);

$$ =tempi;

I{$$ =NULL;}

type dcls
identifier unit deci TOK EQUAL type TOKSEMICOLON

templ=(treenode *)CALLOC(l,sizeof(treenode),"Stype dcls');
strcpy (templ->nodename, $1);
strcpy(templ->unitname, $2);

ternpl->leftchild =$4
add syrn(tempi, typetab);

I type -dcls identifier unit -deci TOKEQUAL type TOK SEMICOLON

templ=(treenode *)CALLOC(l,sizeof(treenode),I"typedcls2"I);
strcpy (templ->nodenane, $2);
strcpy(templ->uniJtnane, $3);

templ->leftchiid = $5;
add symn(templ, typetab);

identifier
trnp=CALLOC ((MAIXSTZ-) ,1, "identi.fier");
strncpy(tmp,yytext,MAXSIZE);

46

TOKIDENTIFIER
f$ tmp;l

trp=CALLOC((MAXSIZE),l,"ideltifier");
strncpy (trp,yytext,MAXSIZE);

standard identifier
1$= trnp;}

standard-identifier
TOKBOOLEAN

I TOKREAL
TOK INTEGER

I TOK CHAR
I TOKABS
I TOKARCTAN
I TOKARGC
I TOKARGV
I TOK CARD
I TOK CHR

I TOKCLOCK
I TOKCOS

TOKDATE
I TOKDISPOSE

TOK LOF
I TOK EOLN

TOKEXP
I TOKEXPO
I TOK FLUSH

TOKGET
I TOKHALT
I TOKLINELIMIT
I TOK LN

TOYMESSAGE
i O 0KNEW
I TOKNUJLL

TOK ODD
TOK ORD
TOK PACK
TOKPAGE

I TOK PRED
I TOKPUT

TOKRANDOM
I TOKREAD

TOKREADLN

I TOKREMDUVE
I TOKRESET
I TOYREWRITE
I TOKROUND
I TOKSEED
I TOKSIN

I TOK_SQR
I TOK_SQRT
I TOKSTLIMIT
I TOKSUCC

47

TOK SYSCLOCK
TOK TEXT

I TOK T IME
I TOK TRUNC
I TOKUNDEFINED

TOK UNPACK
I TOk WALLCLOCK
I TOk_-WRITE
I TOKWRITELN

/* ------------ DECLARATIONS AND FUNCTIONS --------
#include <stdio.h>
#include <ctype.h>
#include <varargs.h>
#include <string.h>
#define TRUE 1
#diefine FALSE 0
#define MAXSIZE -0
#define VAXTABSIZE 857
#define EMPTY 11\O'
#ifdef PRINTCALLOC
#define CALLOC(Length, ElLs, Location) calloc(Length,
Elts);printf("calling calloc(%d) in %s\n", Length*Elts, Location)
#else
#define CALLOC(Length, Elts, Location) calloc(Lengjth,Elts)
#endif
struct tnode

short marked;
char nodenarne(MAXSIZE];
char unitr-imefMAXSIZE];
struct tnode *leftchild;
struct tnode *rightch'-Id;

typedef struct tnode treenode;
extern hashpjwo;
exlern FILE *yyin;
extern char yyt extHj;
extern mnt end-ff-Ie;
extern int yylineno;
extern char *cal1oco;
extern char *strcato;
treenode typetab(MAX TABSIZE];
treenode paramtab[MAX TABSIZE];
treenode syrntab[30] [MAXTABSIZE];
treenode *curparmis[MAXS§IZE];
treenode *deferred[300];
int deftop;
int parmntop;
int TOS:
int i;
mnt terptype;
char *tmp;
char *tmplI;

48

char *unit;
treenode *tempid;
treenode *templ;
treenode *temp2;
treenode *current;
treenode *temp current;
treenode *next;
treenode *tempnode;
int rhs;
#iffdef YYDEBUG
extern int yydebug;
#endif

/* -------------- FUNCTIONS-----------------------*
setyydebugo(

ifdef YYDEBUG
yydebuq = 1;

endif

mylex()

int token;
again:

token = yylexo;
ifdef YYDEBUG

if (yydebug)
printf("## %d [%dj Is~sI\n",yylineno,token,yytext);

endif
if((token == TOK WHITESPACE) 11 (token == TOK NEWLINE) 11 (token

TOK U'JKNOWN))
goto again;

if ((token == TOKTCOMI-EN-lSTART))
token = yylex();

ifdef YYDEBUG
if (yydebug)
printf("## %d [%dj lI-sl\n",yylineno,token,yytext);

endif
if (token ==TOK A1.1ERSAND)I

return (TOKUNTil);

while (token !=TOKCOMMENTi END)I
token = yylexoU;

*ifdef YYDEBUG
if (yydebug)
printf("## % d ['Cd] K sI\n"l,yy'lineno,token,yytex.t);

endif

goto again;

if ((oken == TOK _C2-1-ENT2_START))
token = yylexo;

ifdef YYDEBUG
if (yydebug)

printf("## %d [id] %s\n",yylineno,token,yytex.t);
endif

49

if (token TOKAMPERSAND)I
return(TOKUNIT2);

while (token !=TOK-COMMENT2 END)I
token = yylexo;

#ifdef YYDEBUG
if (yydebug)

printf("## %d [%d] I%sI\n",yylineno,token,yytext);
#endif

goto again;

ifdef TRACETOKENS
printf("%3:%sn", token, yytext);

endif
return (token);

mnt print_node (expr)
treenode *expr;

mnt ok = TRUE;
printf("%s ", expr->nodename);
if (expr->leftchild == NULL && expr->rightchild =NULL)

printf("%s\n", expr->unitname);
else if(expr->leftchild NULL && expr->rightchild ==NULL)

printfU'(");
else if(expr->rightchild NULL && expr->leftchild ==NULL)

printf("l1n")
else if (expr->leftchild !=NULL && expr->rightchild NULL)
printf("2\n");

if (ok && expr->leftchild NULL)

ok =print-node (expr->leftchild);

if (ok && expr->rightchiid !=NULL)

ok =print node (expr->rightrzhild);

if (!ok) return FALSE;
else return TRUE;

void add -sym(entry, table)
treenode *entry;
treenode table[];

mnt i, first i,done;
i = hashpjw(entry->nodenane);
first i = i
done 70;
while (done == 0)f
if (straimp(table[il.nodename, EMPTY) 0)i (i + l)%MAXTABSIZE;
else done = 1;
if (i == first_i) done = 1;

if (strcrnp(table[i] .nodename, EMPTY) 0)

50

fprintf(stderr,"Warning, Symbol table exceeded\n");
table[i] = *entry;

char *lookup (name)
char *name;

int i,j,first i,done;
i = hashpjw(name);
j = TOS;
first i = i;
done = FALSE;
while (done = FALSE)

if (strcmp(symtab[j] (i].nodename, name):= 0)
done = TRUE;

else

i (i + 1)%MAXTABSIZE;
if (i == first i)

j--; /* right back where we started in stack */
if (j < 0) /* run off bottom of stack */
done = TRUE;

if (j < 0) /* run off bottom of stack */
return(EMPTY);

else
return(symtab[j] [i] .unitname); /* return unit associated w/

identifier */
I
treenode *typelookup (name)
char *name;

int i, first i,done;
i = hashpjw(name);
first i = i;
done = FALSE;
while (done :: FALSE)

if (strcmp(typetabti] .nodenare, name) == ()
done = TRUE;

else

i (i + 1)%MAXTABSIZE;
if (i == first i)
done = TRUE;

a }

if (strcmp(typetab[i].nodename,name) != 0)
return (NULL);

else
return (typetar [i] .leftchild);

treenode *parm lookup(proc func name)
char *proc func_name;

51

int i, first i,done;
i = hashpjw(proc-func-name);
first i = i
done = FALSE;
while (done == FALSE)

if (strcrnp(paramtab[i] .nodename, proc_func_name) 0)
done =TRUE;

else

i (i + 1)%MAXTABSIZE;
if (i = first i)
done =TRUE;

if (stramp(paramtab[iJ .nodename,proc func_name) =0)

return (NULL);
else
return (& (paramtab ~i]);

mnt build syrn(str, head)
char *str;
treenode *head;

char *headstr;
treenode *temp;
if (head == NULL

#ifdef NULLLEAFPRINT
printf ("Null head on %s\n",str);

#encif
return;

if (head->leftchild =mNULL && head->rightchild NULL)
#ifdef NULLLEAFPRINT

printf ("leaf head on 'sOn",str);
#endif

return;

tempnode = (treenode *)CALLC(i,sizeof(treenode),build- srrY'):
while (head !=NULL)

strcpy (tempnode->nodenare, str);
strcpy (tempnode->unitname, head->urnitname);
strcat (tempnode->nodename, head->nodename);
if (strwn(head->nodename, ".9) != 0)

f a
tempnode->leftchild =NULL;

tempnode->rightchild =NULL;

add -sym(tempnode, syrrIabrTOS]);

build sym (tempnode->nodename, head->leftchild);
head =head->rightchild;

52

void break -link(link) /* caused by linked-list declarations ~
treenode *fink;
{treenode *trav;
if (link=NULL) return;
trav=link;
while (trav!=NULL)
trav->marked = 1;
if (trav->leftchild != NULL)

if (trav->leftchild->marked==l)

trav->leftchild =NULL;

else break link(trav->leftchild);
tray = trav->rightchild;

void clear mark(link)
treenode *fink;
{treenode *trav;
tray = link;
while (tray != NULL)

if (trav->marked ==1)
trav->marked = 0;
clear-mark (trav->leftchild);

tray trav->rightchild;

#define yylex mylex

53

/ * -- - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - -

pascaiscan. 1

1* Scanner specification for Reacher

/~Notes: *
/*Null string is not allowed
/* Comments longer than 954 characters explode the scannerIt

/* ---

/* Declarations created by yacc for the tokens *

#include "y.tab.hI"

letter [A-Za-z)
digit [0-91
underscore "1

/* -- /
/* RULES *

{letter} ({letter)lI digit}il{underscore})* I return(check_id(yytext));
{digit}+'."{digit}+(eEp'+"{digit}{digit}* I return(TOKUNSIGNEDREAL);

{digit}+"."{digit}+[eE]'-"{digit){digit}* {return(TOKUNSIGNED REAL);

{digit}+".'{digit}+[eE] {digit} {digit}*f
return(TOKUNSIGNEDREAL);
{digit}+"."1{digit}+- I return(TOK UNSIGNED_-REAL);
{digit}+[eEV'+"'{digit}+ {return(TOK UNSIGNEDREAL);
{digit}+[eE]"-I'{digit}+ {return(TOK UNSIGNEDREAL);
{digit}+[eE]{digitl+ {return(TOk_-UNSIGNED REAL);
{digit}± return(TOK UNSIGNEDINTEGER);I

II(II return(TOK CNT2ENT1 START);
,fill return(TOK CM IENTlEND);I

return(TOK COMMENT2 START);
return(TOKCOMMENT2_END);
return (TOK Ar 2ERSANf);
return(TOKPERIOD);

11; It return(TOK SEMICOLON);I

"1" {return(TQKDIVIDE);
" {return(TOK DOTDQT);

return(TOK GREATERT-iN);
freturn(TOK GREATERTHANOREQUALTO);I
return(TOK LESSTHAN);I
return(TOK LESSTHANGREQUALTO); I
return(TOK NOTEQUAL); I
return(TOK-MINJS);I

"U {return(TOK OPENPAREN);
"1 {return(TQK CLOSEPAREN);

return(TOK MULT);)
return(TOK OPEBRACKET);I

"1~~ {return(TOK-CLOSEBRACKEFT); I
return(TOKPLUS);I
r e tu rn(TOK PO 1N-1ER);,

54

(return(TOK COLON); I
f return(TOK COMMA);

S{ return(TOK EQUAL);
return(TOK ASSIGN);

{litstring} { return(TOKSTRING);
[\t\f]+ { return(TOK WHITESPACE);
[\n] { return(TOKNEWLINE);

return(TOK UNKNOWN);
/ ------------------------------------ * /

/* USER SUBROUTINES */
#include <stdio.h>
#include <ctype.h>
#include <varargs.h>
#define TRUE 1
#define FALSE 0

Data structures for pre-defined identifiers:
struct rsvd[] Reserved words
stru:: std type[Standard or predefined types
struct std func[] Standard functions
struct stdjroc" Standard procedures

RESERVED WORD Structure
struct {

char *s;

int code;
rsvd[] = (
"AND", TOK AND },
"ARRAY", TOKARRAY },
"BEGIN", TOEBEGIN },
"CASE", TOYCASE },
"CONST", TOECONST },

j" DV", TOE-DIV },
"DO", TOK DO },
"DOwNTO", TOE DONTO } ,
"ELSE", TOE ELSE },
"END ", TOK -END
"FILE", TOK-FILE 1,
"FOR", TO-FOR
"FORWARD", TOE FORWARD },
"FUNCTION", TOE FUNCTION },
"GOTO", TOK-GOTO 1,
"IF", TOE IF },
"IN", TOKIN },
"LABEL", TOE LABEL ,
"MOD", TOYMOD },

"NIL", TOKNIL },
"NOT", TOK-NOT },
"OF", TOE OF },
"OR", TOK OR },

TOK PACKED },
"PROCEDVRE", TOK-PROCEDURE },
"PROGRAM", TOKPROGRAM),
"RECOR ", TOK RECORD },

55

'"REPEAT", TOK REPEAT },
"SET", TOKSET },
"THEN", TOK-THEN },
"TO", TOK TO },
"TYPE", TOK TYPE T,
"UNTIL", TOK UNTIL },

{ "VAR", TOKVAR },
"WHILE", TOKWHILE },
"WITH", TOKWITH },
NULL, 0 }

struct
char *s;
int code;

} std type[] = (
"BOOLEAN", TOK BOOLEAN },
"INTEGER", TOK INTEGER },
"REAL", TOK REA.L },

/* { "STRING", TOKSTRING },*/ /* ISO standard?? /
"TEXT", TOKTEXT },
NULL, 0 1

struct
char *s;
int code;
std func[] = f

"IABS", TOK ABS },
"SQR", TOK SQR 1,
"SQRT", TOK SQRT 1,
"SIN", TOK SIN },
"Cos", TOK COS },
"ARCTAN", TOKARCTAN },
"LN", TOKLN
"EXP", TOK EXP 1,
"TRUNC", TOK TRIJNC },
"ROUND", TOK ROUTN },
"ORD", TOK ORD },
"CHR", TOECHR },
"SUCC", TOE SUCC },
"PRED", TOE PRED ,
"ODD", TOK ODD },
"EOLN", TOE EOLN },
"EOF", TOEC },
"ARGC", TOK-ARGC }, /* Berkeley Pascal Standard

Functions */
"CARD", TOE CARD }, /*
"CLOCK", TOK CLOCK }, /* I
"EXPO", TOEEXO }, /*\ /*/
"RANDOM", TOK RANDOM } , / * /
"SEED", TOESEED },
"SYSCLOCK", TOE SYSCLOCK },
"UNDEFINED", TOK_ UTDEFINED },
"WALLCLQCK", TOY WA1LCLCK } ,

fNULL, 0)

56

struct
char *s;
int code;
stdproc[]

"'READ)", TOKREAD }
{"READLN", TOKREADLN }

"WRITE", TOKWRITE }
"WRITELN", TOK -WRITELN }
"REWRITE" TOKREWRITE }
"RESET", TOKRESET 1,
"PUT"1, TOKPUT }
"GET", TOKGET }
"PAGE", TOKPAGE }
"NEW", TOK NEW }
"DISPOSE", TOKDISPOSE }
"PACK", TOK PACK 1,

"UITPACK", TOKUNPACK ~
"ARGV", TOK_-ARGV),/*Bkly Pascal Std Procedures *

"DATE", TOKDATE }, /* I
"FLUSH", TOKFLUSH 1,
"HALT", TOKHALT } * *

{"LINELIT", TOY LINELIMIT },/*
"MESSAGE", TOKMESSAGE }
"INULL", TOKNULL 1,

{"REMOVE" TOK_-RENOVE }
{"STLIMIT", TOKSTLIMIT }

"TINE", TOK TIME 1
{NULL, O

check id(t1)
char *t;

reQ-ister i;
char s[2561;
strcpy(s,t);
for (i=2; s[-';i-V I

if (islower (srij)
sL, c- e r S 'L

/First see if i~ s a rescrvei wc rd *7

(st.rcFr--s,rsv-1[].s))
retu r n (svJ"i] .code)

1* h<w see if this is a standard type *

for (i=. std typerils i++)
s!tr=-i (s, s!11 type~il .s))
r e turn sc~ype [i code);

/* Now see if this is a standard function *

fr (0 s td f un'-[i~ .s; i ++)f

N-w !. i tis 1s a standard -roeue

57

for (i=O; stdyproc~i] .s; i++)I
if (!strartp(s, stdprocti].s))

return (stdjproc[i] .code);

/* Default - plain old identifier *
return (TOK IDENTIFIER);

58

/* Pparse.c *
include "stdio.h"
define U(x) x
define NLSTATE yyprevious=YYNEWLINE
define BEGIN yybgin = yysvec + 1 +

define INITIAL 0
define YYLERR yysvec
define YYSTATE (yyestate-yysvec-l)
define YYOPTIM 1
define YYLNAX BUFSIZ
* define output(c) putc(c,yyout)

define input() (((yytchar=yysptr>yysbuf?U(*--
yysptr) :qetc(yyin))=10? (yyiineno+s,yytchar) :yytchar) EOF?O:yytchar)
define unput (c) {yytchar= (c);if(yytchar=='\n')yylineno-
*yysptr++=yytchar;)
define yymore() (yyrnorfa=l)
define ECHO fprintf(yyout, "'-s",yytext)
define REJECT { nstr =yyrejecto; goto yyfussy;}
int yyleng: extern char yytext[];
mnt yyrnorfg;
extern char *yysptr, yysbuf[J;
mnt yytchar;
FILE *yyin = {stdin}, *yyout = {stdout);
extern mnt yylineno;
struct yysvf

struct yywork *yystoff;
struct yysvf *yyother;
mnt *yystops;};

struct yysvf *yyestate;
extern struct yysvf yysvecL'I, *yybgin;
/* Declarations created by yaco for the tokens *
#include "y.tab.h"

/* RULES *

* define YYNEWLINE 10
yylex()
mnt nstr; extern int yyprev--cu-s;
while((nstr = yylooko) >= C)
yyfussy: switch(nstr)j
case 0:
if(yywrap()) return(Q); break;
case 1:

freturn(check_ id(yytexo));
break;
case 2:

break;
case 3:

1return (TOKUNSISNED REA1L1
break;
case 4:

1return(TKUSLERA)
break;
case 5:

59

return(TOKUNSIGNEDREAL);I
break;
case 6:

return(TOKUNSIGNED REAL);I
break;
case 7:

return(TOKUNSIGNEDREAL);I
break;
case 8:

return(TOKUNSIGNEDREAL);I
break;
case 9:

return(TOKUn4SIGNEDINTEGER);I
break;
case 10:

Ireturn(TOKCOMMENTISTART);
break;
case 11:

freturn(TOKCO44ENTl END);I
break;
case 12:

freturn(TOKCOI4Et=2_START);
break;
case 13:

1return(TOKCOMMENT2_END);
break;
case 14:

freturn(TOKAMPERSAND); I
break;
case 15:

return(TOKPERIOD);I
break;
case 16:

returr (TOKSEMICOLON);
break;
case 17:

return(TOKDIVIDE);I
break;
case 18:

return(TOK DOTDOT);I
break;
case 19:

return(TOKSr EATERTHAN);
break;
case 20:

return(TOKGRE-ATERTHANOREQUALTO);
break;
case 21:

return(TOKLESSTHAN);
break;
case 22:

ret~urn(TOKLESSTHANOREQUALTO);I
break;
case 23:

freturn(TOKNOTEQUAL);

6(0

break;
case 24:

{return(TCK MINUS);
break;
case 25:

{return(TOKOPENPAREN);
break;
case 26:

return(TOKCLOSEPAREN);
break;
case 27:

return(TOK MULT);I
break;
case 28:

return(TOKOPENBRACKET);
break;
case 29:

(return(TOKCLOSEBRACKET);
break;
case 30:

freturriTOKPLUS);
break;
case 31:

(return(TOKPOINTER);
break;
case 32:

(return(TOKCOLON);
break;
case 33:

Ireturn(TOKCOMMA);
break;
case 34:

return 4TCK EQ UAL);
break;
case 35:

return(TOK ASSIGN);
break;
case 36:

ireturn(TOKSTRING);
break;
case 37:

return(TOKWHITTESPAGE);
break;
case 38:

return)(TOKNEWLIN--j;
break;
case 39:

re*-urn (TOKUNqKNOWN7);
break;
case -1:
break;
default:
fpriz~tf (yyou., "ba-d switcob yyiook --d", nstr);

return(O);
/* end of Y, 'ex ,

61

/*/

/* USER SUBROUTINES */
#include <stdio.h>
#include <ctype.h>
#include <varargs.h>
#define TRUE 1
#define FALE 0

Data structures for pre-defined identifiers:
struct rsvd(] Reserved words
struct stdtype[] Standard or predefined types
struct std func[] Standard functions
struct std--proc[] Standard procedures

RESERVED WORD Structure
struct f

char *s;
int code;

I rsvd[] = {
"AND", TOK AND },
"ARRAY", TOKARRAY },
"BEGIN", TOKBEGIN }•
"CASE", TOKCASE },

{ "CONST", TOK_-CONST },
{ "DIV", TOKDIV },
{ "DO", TOK DO },
{ "DOWNTO", TOK DOWNTO },

"ELSE", TOKELSE },
{ "END", TOK END 1,

"FILE", TOKFILE },
{ "FOR", TOKFOR },
"FORWARD", TOK FORWARD },
"FUNCTION", TOK FUNCTION },
"GOTO", TOKGOTO },
"IF", TOK IF 1,
"IN", TOK IN },
"LAEEL", TOK LABEL--,
"MOD", TOK MOD 1,
"NIL", TOYNIL },
"NOT", TOKNOT },
"OF", TOK OF },
"OR", TOK OR },
"PACKED", TOY PACKED },
"PROCEDURE", TOK PROCEDURE },
"PROGRAM", TOK-PROGRAM },
"RECORD", TOK RECORD },
"REPEAT", TCK REPEAT },

f "SET", TOKSET },
"THEN", TOK-THEN },
"TO", TOK TO 1,
"TYPE", TOK TYPE }
"UN-TIL", TOKNTI u : 1,
"VAR", TOK_-VAR },

j "WHILE", TO --W;L"

62

"WITH", TOKWITH }
NULL,0

struct
char * s;

_nt code;
std type[] =f

{"BOOLEAN", TOK BOOLEAN }
"INTEGER", TOKINTEGER 1
"IREAL" , TOK REAL 1,
"STRING", TOK-STRING),-/ /* ISO standard?? *
"TEXT", TOKTEXT 1
NULL,01

struct
char *s;

int code;
I std func[J f

"ABS", TOKAB S
ISQR", TOYSQR },

f"SQRT", TOKSQRT 1,
{ "SN",TOKSIN 1

"COS", TOYCOS 1
"ARCTAN"1, TOYAECTAN }
'IN"1, TOYLN14

It~xp",TOKEXP If
"ITRU7NC"l, TOYTRIJNC
I"ROuND", TOKROUND 1
"ORD", TOKORD 1,

11CHR",TOKCHR I,
11 ~ ~ ~ TYSUCC11TKSrC },

"BRED", TOYBRED },
"ODD", TOYODD)f
11EOLN", TOYEOLN }
IEOF", TOYEQE }
" AR G C TOYAROC }, /* Berkeley Pascal Stan~d_-__

Fiunctions ,

i"CARD", TOKCARD , /;/
j"CLOCK", TOYCLOCK I, /*

"EXPO", TOYEXPO }, / * " '
"1RANDOM", TOYRANDOM I / * *

"SEED", TOKSEED },
"SYSCLOCK", TOKSYSCLOCK }

f"UN-DEFINED",f TOY UNDEFINED }
"WALTLCLOCK", TOK-WALLCLOCK }
NTULL, 0

struct
char *s;
nt code;

"REA_"- TOYREAD }
READ LU" ,TO? EAL

f"WRITE", TOKWRITE }
{ ~~ TOK WRITELN

6)3

j"REWRITE", TOK REWRITE 1
{"RESET", TOKRESET 1,

"PUT", TOKPUT },
"GET", TOkGET 1
"PAGE", TOKPAGE 1

{ "NTEW", TOK NEW 1
"DISPOSE", TOkDISPOSE 1
"PACK", TOKPACK),
"1UNPACK" TOK UNPACK }
"ARGV", TOK-ARGV),/* Berkeley Pascal Standard

Procedures ~
"DATE", TOKDATE /, I*
-FLUSH", TOKFLUSH }, * I1
"HALT", TOKHALT },/*\ /-/
"LINELIMIT", TOKLINELIMIT }, /*
"MESSAGE", TOKMESSAGE },
"NULL", TOK__NULL),
"REMO4VE", TOK REMOVE }
"1STLIMIT", TOK STLIMIT 1
"1TIME", TOKTIE },
NULL, 0 1

check id(t)
char *t;

register i;
char s[256];
strcpy(s,t);
for (i=O; sti]; i++)

if (islower(stij)))
sti) toupper(stij);

/* First see if this is a reserved word *

for (i-'O; rsvd[iJ.s; i++)f

if C!strcrp(s,rsvd[ils))
return(rsvdti] .code);

/* Now see if thi4S is a standard type *

for (i=O; std type[i) .s; i+4-)
if (!strcmp(s, std -type[i].s))

return(std-type [ii .ccle);

/* Now see if this is a standard function *

for (i=O; std-funcFils; i++)f
if (Istrcmnp(s, std funci' .s))

return(std-functi] .code);

/* Now see if this is a standard procedure *

for (i=9; stdprocti] .s; i-++){
if (Istrcmp(s, stdproc~i].s))

return(stdproc[i] .code);

/* Default -plain old identifier ~
return (TOK IDENTIFIER);

04

in~t yyvstopHl i
0,
39,
0,
37,
39'
0,
38,
0,
14,
39,
0,
39,
0,
25,
39,
0,
26,
39,
0,
271,
39,
0,'
30,
39,
0,
33,
39,
0,
24,
39,
0,
15,
39,
0,
17,
39,
0,
9,
39,
0,
32,
39,
0,
16,
39,
0,
21,
39,
0,
34,
39'
0 ,
19,
39,

65

0,
31,
39,
0,
1,
39'
0,
28,
39,
0,
29,
39,
0,
10,
39,
0,
11,
39,
0,
37,
0,
12,
0,
13,
0,
18,
0,
9,
0,
35,
0,
22,
0,
23,
0,
20,

0,
3E,
C,
5,
0,
8,
0,
6,
C,1
7,
0,
4,
0,
2,
0,
3,
0,

66

define YYTYPE char
struct yywork { YYTYPE verify, advance; } yycrank[] =

0,0, 0,0, 1,3, 0,0,
0,0, 0,0, 0,0, 0,0,
0,0, 0,0, 1,4, 1,5,
4,28, 0,0, 0,0, 4,28,
0,0, 0,0, 0,, 0,0,
0,0, 0,0, 0,0, 0,0,
29,0, 0,0, 0,0, 0,0,
0,0, 0,0, 0,0, 0,0,
0,0, 0,0, 0,0, 4,28,
0,0, 0,0, 0,0, 1,6,
1,7, 1,8, 1,9, 1,10,
1,11, 1,12, 1,13, 1,14,
1,15, 1,16, 8,31, 10,32,
14, 33, 29, 42, 30, 29, 0,0,
0,0, 0,0, 0,0, 1,17,
1,18, 1,19, 1,20, 1,21,
17,37, 1,22, 1,23, 19,38,
19,39, 21,40, 1,23, 43,47,
0, 0, 0,0, O,,, 2,6,
0,0, 2,8, 2,9, 2,10,
2,11, 2,12, 2,13, 2,14,
2,15, 0,0, 0,0, 0,0,
0,0, 0,0, 0,0, 0,0,
1,24, 7,29, 1,25, 2,17,
2,18, 2,19, 2,20, 2,21,
0,0, 7,29, 7,0, 43,47,
16,34, 0,0, 16,35, 16,35,
16, 35, 16, 35, 16, 35, 16, 35,
16, 35, 16, 35, 16, 35, 16, 35,
0,0, 0,0, 0,0, 0,0,
0,0, 0,0, 0,0, 0,0,
1,26, 0,0, 1,27, 16,36,
2,24, 0,0, 2,25, 7,30,
0,0, 0,0, 0,0, 0,0,
0,0, 0,0, o,0, 0,0,
7,29, 0,0, 0,0, 0,0,
0,0, 0,0, 23,41, 23,41,
23,41, 23, 41, 23,41, 23, 41,
23, 41, 23, 41, 23, 41, 23, 41,
7,29, 7,29, 0,0, 16,36,
2,26, 7,29, 2,27, 23,41,
23, 41, 23, 41, 23, 41, 23, 41,
23,41, 23,41, 23,41, 23, 41,
23, 41, 23,41, 23,41, 23, 41,
23,41, 23,41, 23, 41, 23, 41,
23, 41, 23,41, 23,41, 23, 41,
23,41, 23,41, 23,41, 23,41,
23,41, 0,0, ,0, 01,
0,, 23,41, 0,0, 2,4,
23,41, 23, 41, 23, 4, 23,41
23,41, 23,41, 23,41, 23,41,
23,41, 23, 41, 23, 41, 23, 41,

67

23,41, 23,41, 23, 41, 23,41,
23, 41, 23, 41, 23, 41, 23, 41,
23, 41, 23, 41, 23, 41, 23, 41,
23, 41, 34, 43, 34, 43, 34, 43,
34, 43, 34, 43, 34, 43, 34, 43,
34, 43, 34, 43, 34, 43, 36, 44,
0,0, 36,45, 0,0, 0,0,
36, 46, 36, 46, 36, 46, 36, 46,
36, 46, 36, 46, 36, 46, 36, 46,
36, 46, 36, 46, 44, 48, 44, 48,
44, 48, 44, 48, 44, 48, 44, 48,
44, 48, 44, 48, 44, 48, 44, 48,
45,49, 45,49, 45,49, 45,49,
45, 49, 45, 49, 45, 49, 45, 49,
45, 49, 45, 49, 46, 46, 46, 46,
46, 46, 46, 46, 46, 46, 46, 46,
46, 46, 46, 46, 46, 46, 46, 46,
47,50, 0,0, 47,51, 0,0,
0,0, 47,52, 47,52, 47,52,
47,52, 47,52, 47,52, 47,52,
47,52, 47,52, 47,52, 50,53,
50, 53, 50, 53, 50, 53, 50, 53,
50, 53, 50, 53, 50, 53, 50, 53,
50,53, 51,54, 51,54, 51,54,
51,54, 51,54, 51,54, 51,54,
51,54, 51,54, 51,54, 52,52,
52,52, 52,52, 52,52, 52,52,
52,52, 52,52, 52,52, 52,52,
52,52, 0,0, 0,0, 0,0,
0,01;
struct yysvf yysvec[l :
0, O, 0,
yycranKz+-1, 0, C,
yycrank+-37, yysvec+l, O,
yycrank+O, 0, yyvstop+l,
yycrank 3, 0, yyvstop43,
yycrank+O, 0, yyvstop+6,
yycrank+O, 0, yyvstop+8,
yycrank+-92, C, yyvstcp+ l,
yycrank+8, 0, yyvstcp+13,
yycrank+O, C, yyvstop~l 6,
yycrank+10, 0, yyvstop+19,
yycrank+O, 0, yyvstop 22,
yycrank+O, 0, yyvstop+25,
yycrank+O, 0, yyvstop+28,
yycrank+6, 0, yyvstop*31,
yycrank+O, C, yyvstop+34,
yycrank+58, 0, yyvstop 37 ,
yycrank+3, 0, yyvstop+40,
yycrank+O, 0, yyvstop+43,
yycrank+6, 0, yyvstop+46,
yycrank+O, 0, yyvstop 49,
yycrank 8, 0, yyvstop 52,
yycrank+O, 0, yyvstop+55,
yycranK+98, , yyvstop 58,

68

yycrank+0, 0, yyvstop±61,
yycrank+0, 0, yyvstop+64,
yycrank+0, 0, yyvstop+67,
yycrank+0, 0, yyvstop-70,
yycrank+0, yysvec+4, yyvstop+73,
yycrank+-14, yysvec+7, 0,
yyc-rank+15, 0, 0,
yycrank+O, 0, yyvstop+751,
yycrank+0, 0, yyvstop+77,
yycrank+0, 0, yyvstop±79,
yycrank+173, 0, 0,
yycrank±0, yysvec+I6, yyvstop+S.I,
yycrank+188, 0, 0,
yycrank+0O, C, yyvstop±83,
yycrank+0, 0, yyvstop±85,
yycrank+0, 0, yyvstop+87,
yycrank+0, 0, yyvstop+89,
yycrarnk+C, yysvec+23, yyvstop+91,
yycrank+C, yysvec-3C, yyvstop+93,
yycrank+2, yysvec+34, yyvstop+95,
yycrank+198, 0, C,
yycrank+20), , C,
yycrank+218, 0, yyvstop+97,
yycrank+233, 0, 0,
yycrank+0, yysvec±44, yyvstop+99,
yycrank+0, yysvec-+45), yyvstop+lCl,
yycrank+243, CC,
yycrank+253, C,0,
yycrank+263, C, yyvstcp+103,
yycrank+0, yysve c- , yyvstop+ 105,
yycrank+0, yysvec- 51, yyvstop±1Cl,
0, 0, 0 ;
struct yyw-rk yc vra.3C
struct yysvf *y
char yyrnatchH =

01 ,011 ,12 ,? 01 C- CO1 ,cI

001 1 C1 ,C01 .0 ,C:-

01~ 0C1 0 0 01 .1 1 ,117

tot 101 cl: .111 ,C1 -,)I.

1A' 'A't ,A 'A' ,'A' ,'A' ,'A' , A'
'A' 'A' 'A' f * 'A' 'A ,' W 'A'

'A' ,'A' ,'A t 'A.' ,'A f 'A' ,'A' ,'A'

'At W 'A #,A' ,01 , 1 .1 ,01 ,C01

char yyexl-ra7 =

69)

0, 0, 0, 0, 0, 0, 0, 0,
0, 0,0, 0,0, 0,0, 0,
0, 0,0, 0,0, 0,0, 0,

#ifndef lint
static char ncform-sccsid[I = "@(#)ncform 1.6 88/02/08 S1l; /*
from S5R2 1.2 *
#endif
int. yylineno =1;
define YYU(x) x
define NLSTATE yyprevious=YYNEWLINE
char yytext[YYLMAXI;
struct yysvf *yylstate [YYLPAX], **yylsp, **yyolsp;
char yysbuf[YYLMAXI;
char *yysptr = yysbuf:
int *yyfnd;
extern struct yysvf *yyestate;
int. yyprevious = YYNEWTLINE;
yylook()

register struct yysvf1 *yys!tatle **lsr.;
register struct yywork *yyt;
struct yysvf *~
mnt yych, yyfirst;
struct. yywork *yyr;

ifdef LEXDEBrJG
mnt debug;

endif
char *yylastch;
/* start off machines *

ifdef LEXCEBUQG
debug = 0;

endi f
yy f irst=1;
if (!yymorfg)

yylastch = yytext;
else(

yyrior fg=u;
yylast C! ye.t y ~:

f cr (
isp
yyestate =yyst~ate =yytai1;1,-,

if(yvevi sYNL E i ;

fcr(;)
ifdefLrEW

if (debugq) fprint f (Yyout, "state ~dnysaeyse-
e n i f

yyt = yystate->yys*,off:
i f(y yt y yc ra rk & & !yfr st rv vt b a

transitions *

yyz = yystate->y,,'1hr;
if (yyz == C)break;

70

yyf irst=<;
tryagain:

*ifdef LEXDEBUG
i f (diebug)

fpriritf (yyout, "char 11);
aliprint (yych);
putchar (\nI)

*endif
yyr =yyt;

if ((int)yyt > (int)yycrank){
yyt = yyr +yych;
if (yyt <=r yytop && yyt->verify,+yysvec =

yystate)i
if(yyt->advarice~yysvec == YYLERR)

error transitions
{unput (*--yylastch) ;break; I

*Ip+= yystate = yyt->advance+yysvec;
Q~Ocontrn

el1se if (i (nt)yyt, < (i nt) ycrank) {/ r <
yycrank *

yt=yyr =yyorarnk± (yycrank-yyt)
ifdef LEXDEKS'J

i f dLgfprl ntf (Yyocvt, 'Co7mpressed state\n")
4 endif

f (yyt <= yytop && yyt->ve-rify~yysvec =

yystate)
if (yyt->aiJvar-ca+yysvec ==YYLERR)

*,Isp-+ yysr-ate = yyt->advancetyysvec;

l- YY , ',,ac ' V,[y VAh);

fr irf (yo~, "ryfall b~ikonace
allpr i n (YV (yymatch fyych

<= t (yyt,, <& yyt ->ver f y+yysVec

if (i arreysv- YY'LERR)

*isp- = yystal-e y>aiaeysvc
can 1, r

71

if ((yyst ate = yystate->yyother) && (yyt= yystate-

>yystoff) !=yycrank){
ifdef LEXDEBUG

i f(debug) fpr int f(yyout, "f all1 back to st ate
%d\n',yystate-yysvec-l);
endif

goto tryagain;

endif
else

{unput(*--yylastch) ;break;j
contin:

* ifdef LEXDEBUG
if (detug)j

fprintf(yyout,'state %d char ",yystate-yysvec-
1);

aliprint (yych);
putchar (' \n');

enclif

ifdef LEXDEEUG
if (debug)

fprintf(yyout,"stopped at %d with ",*(lsp-l)-yysvec-
1);

aliprint (yych);
putchar ('\n');

#endif
while (lsp-- > yylstate)f

*yylastch-- 0;
if (*Isr && (yyfr-id= (*1s-m) ->yystops) && *yyfrid >

yyolsp =lsp;

if(yyextra[*yyfndfl){ /* mrust backup ,

while (yyback((*lsp)->yystops,-*yffd)1
&& Isp > yylstate)f

lsp--;
unput (*yylastch--);

yyprevious =YYU(*yylastch);
yylsp lsp;
yylenq yylastch-yytextl;
yytext[yyleng] = 0:

*ifdef' LEXDEEUU3
if (debug)f

fprintf (yyout, "\nrnatch "
sprint (yytext);
fprintf (yyout," action %-d\n",*yyfnd);

endif
return (*yy.fnd++);

72

unput (*yylastch);

if (yytext(O] ==0 /* && feof(yyin)*/

yysptr=yysbuf;
return (0);

yyprevious = yytext[0] =inputo;
if (yyprevious>0)

output (yyprevious);
yylastch=yytext;

ifdef LEXDEBUG
if (debug)putchar ('\n');

endif

yyback(p, m)
int *p;

if (p==O) return(C);
while (*p)

if (*p++ ==M)
return (1);

return (0):

/* the following are only used in the lex library *

yyinput(
return (input ~l

yyoutput (c)
mnt c;

output (c);

yyunput (C)
mnt c;

unput (C);

73

APPENDIX B

UNITCHECK PROCEDURE

#include <stdio.h>
#diefine ENDOFFP1 0
#define BEGIfN EXPN 1
#define NORMAL 2
#def"ine INSERT NODE 3
#define END EXPN 4
#define FUNNY 5
#define MAXSIZE 80
#define MAXLINE 255
#define MAXFILE 80
#diefine TRUE 1
#define FALSE 0
#define EMP2TY '1\011
#include <string.h>

struct tnode

char nodenane [MAXSIZEJ;
char unitnarnetMAXSIZE];
struct tnode *leftchild;
struct tnode *rightchild;

typedef struct tnoje treencde;
struct treelist

treenode *tree;

1;uttelit*et

typeclef struct treelist tlist;
mnt read exp(/*FILE *fp, treenode *expn *)

tlist *load list(/* FILE *fp2 *)
int line no;
char start line[255];
main (arqc, argv)
mnt argc;
char *argrv[];

char in file[MAXFILE],
out file[MAXFILEj;

mnt reada status;
treenode *exp;
tlist *root;
FILE *fpl,*fp2;
if (argo < 3)

74

printf("usage: s <input filename> <output filenaxre>\n", argv[O]);
exit (1);

strcpy(in file,argv[l]);
strcpy(out file,arg-vf2]);
fpl = fopen(in file,"r");
fp2 = fopen(out file,"r");
if ((!fpl) 11 (!fp2))

printf("%s: couldn't open files\n", argv[Ofl;
exit (1);

line no = 0;
root = load list (fp2);
line no = 0;

#ifde7 PRINTREAD
printf ("Below is the exp being compared to each exp in linklist\n\i');

#endif
while (!feof(fpl))

read -status = read-e>xp(fpl, &exp);
switch (read status)j
case END OF FP1
case BEGIN EXPN
case NOR~MAL
case INSERT-NODE

break;
case END EXPN
match(root, exp);
break,

case FUNNY
printf("'maino: Somethig is funny.\n,");
break;

I/* end switch()oi
/* end while()*

fclose (fpl);
fclose (fp2);

int read-exp(fpl, expn)
FILE *fpl;

treenode **expn;

char line(MAXLIN-E];
char operator [MAXSIZE>;
char operand tMAY.SIZE];
char unit [MAXSILZE];
mnt temp,

ninb-arqw-nent!7:
treenode *cp_struiz;
treenode *opndstruct;

if (faets(line, MAXLINE, fpL) ==NULL)

return(END OF FP1);

75

elso
line nlo++;
if (Tine~O (0

HiOde PRINTREAD
printf(" Begin expression\n{\n");

A ndi f
stropy (start line, line):
return (BEGINEXPN);

else if (line[O] =

#ifdef PRINTREAD
printf("}\n End expression\n");

#endif
return (ENDEXPN);

else if (sscanf(iinn',"ws !ji", operator, &nunbargunents) =2)

#ifdef PRINTREAD
printf ("Node = 'Is' arg = Ad\n", operator,nurrb_arguments);

#endif
opstruct = (treenode *) calloc (1, sizecf(treenode));
strcpy (op_struct->nodenarne,operator);
strcpy (op_struct->unitnare,'\O");
if (numb -arguments > 0) temp =read exp(fpl, &(op_struct->ieftchild));
if (numb -arguments > 1) temnp = read_exp(fpl, &(op_struct-

>riqhtchild));
*expn = opstruct;
return(INSERTNODE);

else if (sscanf(lire,"%s is", operand, unit) == 2)

#ifdef PRINTREAD
printf("Node =%s, Unit =-s~n", operand, unit);

#endif
opnd struct =(treenode *)calloc (1, sizeof(treenode));
strcpy(opnd_struct->nodena.e, operand);
strcpyiopnd struct->unitnane, unit);
*expi = opn -struct;
return(INSERT NODE)

else if (sscanf(line."is", operan'j, unit) == 1)

*ifdef PRINTREAD
prir'f("Node is, Unit wunities3 A", C;erand):

*endif
opnd struct =(treenode *)cal'oc (1, sizonf(treeiode))
strCpy(opnd_struct->nodenane, operand);
strcpy(opnd struct->unitname, EMPTY);
*expn = opnd struct:
return(INSERTNODE).

else {*expn =NULL;

76

return (FUNNY);

tilist *load list (fp2)
FILE *fp2;

mnt okay = TRUE,
temnp;

treenode *ass stmnt;
tlist *linked tree =NUJLL;
tlist *tlist hFead = NULL;
if (fp2 = NULL)

*ifdef TRACECALLS
printf("load-list.(): called with no fip2\r');

#endif
exit (1)

while (okay)

temp = read exp (f 2, &ass strrmt);
switch (temnp)

case END EXPN
if (linked-tree)

linked tree->next = (tlist*)calloc(l, sizeof(tli.st_));
linked tree = linked tree->next;
linked tree->t1ree =ass stint;

#ifdef PRINTREAD
printf ("Above is t he next:, linik of tlist. \n\n");

#endif

else

tlist 'head = (tlist*)calloc(I, Sizeof(tlist));
linked tree = tlist -head;
linked tree->tree = ass stmt;

#i-fdef PR:INTPEA:
printf ("Above is the hiea3d of tlist.\n\\n")

#endif

break;
caseFUN

p r in tf ("loa -list (Is a iir'.\"
exit (1)
break;

case END OF FP1
#ifdcef PRINTREAD

printf ("EOF tmrardif0'rn)
#endi f

okay =FLE

break;
default

77

break;
1/* end switch ~

return tlist-head;

void print exp(root)
treenode *root;

if (root=NULL) printf("NTULL\n");
printf("1%s %s',root->nodename,root->unitnane);
if (root->ieftchiid NULL && root->rightchiid==NULL)

printf ("\n');
else if (root->rightchild NULL) printf(" 1\n");
else if (root->leftchild ==NULL) printf(" 1\n");
else printfC" 2\n");
if (root->leftchild!=NULL) print exp(root->leftchild);
if (root->rightchild!=NULL) print exp(root->rightchiid);

mnt match(current list, expression)
tlist *curreflt list;
treenode *expressioni;

mnt found = FALSE;
mnt okay;
mnt compare -exp(/* expl, exp2 1)
mnt fast-comparel(/*expression*/)
mnt fast compare2(/*expression*/)

#ifdef TRA CECALLS
printf("'match(): called from rnain\n"l;
#endif
#ifdef PRINTMATCH
printf("'Tlist=head, do the compare\n");
#endif
if (okay = fast-comparel (expressioni))

printf('expressioi is assign of var to var or unsioned 14t 1)

return (okay);

if (okay = fast-cornpare2(expression))

#ifdef PRINTOKAY
printf("okay is *d\n", okay);

#endi f
printf("expression has no units\n");
return (TRUE);

if (okay =fast cqmpare3(expression))

#ifdef PRINTOKAY

#erifprintf ("okay is *d\n", okay);

printf ("expression has consistant units\n");
return (TRUE);

78

while (!found && current list !=NULL)

#ifdef TRACECALLS
printf ("compare exp: called from match\n");

#endif
#ifdef PRINTMATCH
printf("Comparin, id with id\n",current-list->tree, expression);

#endif
found = compare exp(current-list->tree, expression);
if (found)

printf ("valid units in expression\n");
return C(found)

else

current list =current-list->next;

#iJfdef PRINfMATCH
printf ("1-4-;' MULL chec7k e:-p a!: ne:-:t link\n");

en di f

printf("invalid units in e:-pression");
#ifdef PRINTPARSE
printf("I ending at parsefile line ' d\n",line no);
#else
print \"

#endi'
prii ' s", start lIine,;
print_exp (expression);
printf("i\n");
return (found);

int compare_exp(e:pl, e>:p2)
treenode *expi;
treenode *exp'2 ;

mnt okay = TRu'E;-
if (exo.-l->left-chil;'d I= NU-LL && e:.p2->leftchild 1=NULL)

#ifdJef PRINTMATCH
printf ("Comrparing op (s) with op (s\,ep-ndno exr- -

>nodename);
#endif

if (strcrrp(exp ,l->od-nar.e, exp2->rodenare) == 0)
okay = compare exp(expl->leftchild, exp2->leftchildv

else retuzn(FAISF); /*cirtr diin't match ~

else if (expl->leftchild !=NULL I Iexp2->leftchild != ILLI)
return(FALSE); /* different structures, so no match */

if (okay && ex~l->rightchildJI NULL && exp2->riqhtch-iid 1= NULJIL)

okay = co.-mpar.:p (;-ig.cld:.p--,r4

else if~(xl>ihciI N7UL.L exF.2->ri'ihtc-hi Id j ULL)

79

return(FALSE); V~ different structures, so no match *
if (!okay) return FALSE; /* save the fact that the children didn't

match */
if (expl->leftchild NULL && expl->rightchild ==NULL &&

exp2->ieftchild ==NULL && exp2->rightchild NULL)
#ifdef PRINTMATCH

printf("Comparing (Ts,%s) with (%s,*s)\n",expl->nodename,expl-
>unitnane,

exp2->nodenane, exp2->unitname);
4endif
if (strlen(expl->unitname)>O 11 strlen(exp2->unitname)>O)

return (strcmp(expl->unitname, exp2->unitname) == 0);
else

if (strcrp(expl->nodename, exp2->nodename) == 0) return (TRUJE);
else return CFALSE);

return (okay);

in fast_comparel (expression)
treenode *expression;

if (strcmp (expression->ieftchild->unitname,
expression->rightchild->unitnane) 0 &&
expression->rightchild->rightchild NULL &&
expression->rightchild->leftchild ==NULL)

return (TRUE);
else if (strcrp(expression->rightchild->nodenane,

M@unsigned lit")==O)
return (TRUE);

else return (FALSE);

int fast_compare2 (expression)
treenode *expression;
lit result;
Oifdef PRINTCALLS
printf("fast compare2 called with is as node and is as unit~n",

expression->nodename, expression->unitnane);
henlif

i f (strcrp (expressicri->Lnitnarne, EIMTY) ! 0)

return (FALSE);

else
result = TRUE;
if (expression->lefichild !=NULL)

result last_compare2(expression->leftchild);
if (res>.I && expre-sin-rnig.tcild != NULL)

result =fast corpare2(expessicn->rightrhiid);
return (result);

int~ fast compare 3 expression)
tree n~de *exre~rssin

if (tcpep~ -n~nr,:"=C&

80(

expression->leftchild !=NULL &&
strcrnp(expression->leftchild->unitname, EMPTY) '=0)

#ifdef PRINTOA-LLS
printf ("Calling traverse with %s\n',expression->leftchild-

>unitname);
#endif

return (traverse (expression->ricjhtchild, expression->leftchild-
>unitnane));

else return (FALSE);

int traverse(root, unit)
treenode *root;
char *unit;
lint result = TRUE;
#define UNSIGNED "@@unsigned lit"
if (root NULL) return(TRUE);

#ifdef PRINTOALLS
printf ("traverse ((s, s) , s) \n", root->nodenane, root->unitarrke, unit.)
#endif
if (strcmpD(root->nodename,"+")==0 11 strcmp(root->nodenane,"-')==0)

if (root->leftchild !NUTLL)
if (strcmp(root->leftchild->nodenamne,UNSIGNED)==0) result=TRUE;
else result = traverse(root->leftchild, unit);

if (result && root->rightchild !=NULL)
if (strcmp (root->rightchild->nodenane,UNSIGNED) =0) result=TRUE;
else result = traverse(root->rightchild, unit);

return (result);

else if (strcmp(root->nodename,*?)==0)
if (root->leftchild I= NULL)

if (strcrp(root->left child->nodename,.UNSIGNED)==C)
if (root->rightchild I=NLL)
return (traverse(root->iqhtchild,unict));

else return(FALSE); /* unary * not allowed *

else if (root->riahtchild I= NULL)
if (strcmp(root->rightchild->nodename,UNSTGNED)==0)

return (traversE(roo -,>leftchild,unit));
else return(FALSE); /* muitipication by non unsigned-lit

else return(FALSE); /* unary * not allowed */
else return(FALSE); '* unary or leaf *not allowed *

else if (strcmp(root->nodenarne,"/")==0)
if (root->leftchild I= NULIL)

if (root->rightchild H= NjL L)
if (strcrp(root->rihtchild->nodename,UNSIGNED)==0)

return (traverse(root->leftch.ild,unit));
else return kFALSE); /* division by non unsignenl> */

else return (FALSE); /* unary / not allowed */
a else return (FALSE); /1* unary or leaf / not allowed ~

else if (sripro-u~tareui)H)return(FALSE);
el se r etu rn (Ih~

81

APPENDIX C

j 1257SAMPLE PAGE FROM RULEBASE

:=2
Intermediate kilometersseconds
*2
/2

SquadLoc F!].Endur newtons
Army[] H .EnduranceHj newtons
Ar-my[] H .VO[1 kilometersseconds

f1333
: 2

Al perkilometers
*2
/2

@@unsig-cned lit
* 2
Pararns.XDelta kilometers
Params.YDelta kilometers
+ 2
-2
-2

Terrain[] kilometers
Terrain[] kilometers
Terrain[] kilometers
Terrain[] kilometers

1337
2

A2

/2

@2unsigned it
Pararns.XDelta kilometers
-2
*2
N
- 2
Terrain[] kilometers
TerrairiH kilomrelers
* 2
+ 2
N
@@unsigned-lit
- 2
Terrain[] kilometers
Terrain[] kilometers

82

APPENDIX D

SAMPLE PAGE FROMt OUTPUT

370
2

Ara
/ 2
Pos.X kilometers
Params.XDelta kilometers

371
2

Arq
/ 2
Pos.Y kilometers
Params.YDelta kilometers

447?
2

Effect

-2
Armyf E.MaxSlope
/2
-2

Alt kilometers
Alt kilometers
M 3v e Dst kilIC netC- S

f50 0
:=2

/ L

Pars.X kelrn~a

/ 2
P,-:.Y k iI -, r7

x -1

LIST OF REFERENCES

Beizer, B., Softw are Testing Techniques, Van Nostrand Reinhold, 1990.

Bhargava, H. K., Dimensional Analysis in Mathematical Modeling Systems, A
Simple Numerical Method, Naval Postgraduate School, Monterey, California,
February 1991.

Dobieski. A. W., "Modeling Tactical Military Operations", Quest, pp. 1-25, Spring
1979.

"Glossary of Software Enfinnerring Terminology," ANSI-IEEE Standard 729-
1983, 1983.

Howden, W. E., "A Survey of Static Analysis Methods," Tutorial: Software
Testing and Validation Techiques, New York: IEEE Press, pp. 101-115, 1981.

Howden, W. E., "A Survey of Dynamic Analysis Methods," Tutorial: Software
Testing and Validation Techiques, New York: IEEE Press, pp. 210-230, 1981.

Jensen, K. and Wirth, N., PASCAL User Manual and Report, Springer-Verlang,
1974.

Karr, M. and Lovemen, D.B., "Incorporation of Units inot Programming
Languages, " Communications of the ACM, vol. 21, no. 5, pp. 385-391, May
1978.

Mason,T. and Brown, D., lex and yac:, O'Reilly & Associates, Inc., 1991.

Shimeall, Timothy, "Conflict Specification," Naval Postgraduate School,
Monterey, California, 1990.

Shimeall, Timothy and Leveson Nancy, "An Empirical Comparison of Software
Fault Tolerance and Fault Elimination," IEEE Transaction on Software
Engineering, February 1991.

84

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2)
Naval Postgraduate School
Monterey, California 93943-5002

3. CPT Judy A. Browning 4
96 Ravenwood Way
Warner Robins, GA 31093

4. Timothy Shimeall 4
Code CS/Sm
Naval Postgraduate School
Monterey, California 93943-510(0

5. Amr Zaky
Code CS/Za
Naval Postgraduate School
Monterey, California 93943-5100

6. P. bert B. McGhee
Cade CS/Mz
Naval Postgraduate School
Monterey, California 93943-51(X)

7. CDR Thomas J. ttoskins
Code 37
Naval Postgraduate School
Monterey, California 93943-51(X)

x5

